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Abstract—With companies such as Netflix and YouTube ac-
counting for more than 50% of the peak download traffic
on North American fixed networks in 2015, video streaming
represents a significant source of Internet traffic. Multimedia
delivery over the Internet has evolved rapidly over the past few
years. The last decade has seen video streaming transitioning
from User Datagram Protocol (UDP) to Transmission Control
Protocol (TCP)-based technologies. Dynamic Adaptive Streaming
over HTTP (DASH) has recently emerged as a standard for
Internet video streaming. A range of rate adaptation mechanisms
are proposed for DASH systems in order to deliver video quality
that matches the throughput of dynamic network conditions for
a richer user experience. This survey paper looks at emerging
research into the application of client-side, server-side and in-
network rate adaptation techniques to support DASH-based
content delivery. We provide context and motivation for the
application of these techniques and review significant works in
the literature from the past decade. These works are categorised
according to the feedback signals used and the end-node that
performs or assists with the adaptation. We also provide a review
of several notable video traffic measurement and characterisation
studies and outline open research questions in the field.

Index Terms—DASH, HTTP, TCP, ABR, QoE, adaptive mul-
timedia streaming, traffic measurement

I. INTRODUCTION

IN recent years, we have seen the rapid convergence of
various multimedia services such as traditional TV, Internet

Protocol TV (IPTV), video conferencing, video-on-demand,
live and mobile streaming services. With companies such as
Netflix and YouTube accounting for more than 50% of the
peak download traffic on fixed networks in North America in
2015 [1], video streaming represents a significant source of
Internet traffic. In the past decade, the Internet has become
a standard medium for multimedia delivery. The Hypertext
Transfer Protocol (HTTP) [2] on top of Transmission Control
Protocol (TCP) [3] has become the primary protocol for
multimedia content delivery over the Internet, also widely
known as over-the-top (OTT) or Internet Protocol (IP)-based
content delivery. Cisco Visual Networking Index forecasts IP
video traffic to be 82% of all consumer traffic and Content
Delivery Networks (CDN) will carry two-thirds of all Internet
traffic by 2020 [4].

Real-time multimedia delivery has tight latency constraints,
and data arriving too late is essentially useless. Efficient media
compression creates interdependence between packet contents
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and codecs, so packet losses and late arrivals of video data
can be detrimental. When combined with the inherent nature
of network environments and transport protocol behaviours,
effective multimedia delivery presents many challenges.

Applications run on top of transport protocols and real-
time multimedia applications ideally trust the transport layer
to minimise induced delays and deliver data with an appro-
priate degree of reliability and timeliness. Over the years,
message-oriented transport protocols, such as Stream Control
Transmission Protocol (SCTP) [5] and Datagram Congestion
Control Protocol (DCCP) [6] have been thought suitable, but
the existence of Network Address Translations (NAT) [7], [8],
firewalls, and other middleboxes has led to a range of known
deployment challenges [9], [10], [11]. Hence, most early work
focused on enhancing User Datagram Protocol (UDP) [12] for
multimedia delivery. On the other hand, although TCP prefers
reliability to timeliness and its congestion control tends to
induce high queuing delays, it traverses any network path that
supports regular HTTP-based communication. Therefore, in
recent years TCP has rapidly supplanted UDP as the standard
for multimedia delivery.

Standards bodies have been developing various technologies
for multimedia transport and encapsulation over the years,
such as digital broadcasting, audio and video transport over
the Internet and streaming to mobile devices. For example, the
Moving Picture Experts Group (MPEG) developed MPEG-2
Transport Stream and International Organisation for Standard-
isation (ISO) base media file format. The Internet Engineering
Task Force (IETF), Institute of Electrical and Electronics
Engineers (IEEE), 3rd Generation Partnership Project (3GPP)
have also provided many protocols for multimedia content
delivery packetised by MPEG technologies. Recently, MPEG-
DASH (Dynamic Adaptive Streaming over HTTP) [13] has
become a standard that aims to provide an uninterrupted
video streaming service to users with dynamic network con-
ditions and heterogeneous devices using an application layer
Adaptive Bitrate (ABR)1 algorithm. The main goal of ABR
algorithms is to prevent client’s playout buffer under-run,
while maximising the perceived Quality of Experience (QoE)
of the user by adapting to the dynamically changing network
conditions. Some deployment examples in the industry are
Microsoft Smooth Streaming [16], Adobe HTTP Dynamic
Streaming [17] and Apple’s HTTP Live Streaming [18].

1The acronym ABR here is not to be confused with ABR (average bitrate)
encoding used by LAME [14] developers to refer to a type of variable bit
rate encoding; or the ABR (Available Bit Rate) service category used in early
ATM networks [15].
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This paper provides a survey of key rate adaptation tech-
niques in the literature. DASH specifications do not enforce
any particular adaptation algorithm, which provides flexibility
for ABR development. We categorise these rate adaptation
techniques in terms of the feedback signals they use and the
end-node that performs or assists the adaptation.

The rest of this paper is structured as follows. Section II
summarises the history of video delivery over packet networks
and how DASH emerged as preferred choice for content
delivery. Section III describes DASH architectural design,
standardisation and applications. Section IV surveys client-
side throughput-based, buffer-based and hybrid/control theory-
based techniques in research literature. Section V reviews pro-
posed techniques for server-side, transport layer and network
level solutions to assist with DASH rate adaptation. Section VI
reviews several notable video streaming traffic measurement
and characterisation studies. Section VII offers concluding
remarks and outlines open research questions in the field for
potential future work.

II. BACKGROUND

Here we cover the evolution of video delivery over packet
networks and associated technologies.

A. Video delivery in IP networks

Video frames should be played between 24-30 frames per
second to create the illusion of motion. Video compression
algorithms carry out both intra and inter-frame compression,
which have temporal dependencies, resulting in Intra (I),
Bidirectional (B) and Predicted (P) frames. I frames are largest
because they only use intra frame compression, whereas B and
P frames are smaller because they use previous I frames for
size reduction [19]. The variability in encoded bits per second
leads to Variable Bit Rate (VBR)2 video, as used by the ITU
(International Telecommunication Union) H.264 and MPEG-4
video coding standards.

The VBR encoded video is then transmitted into the Inter-
net. Since the Internet does not provide a constant, guaranteed
bandwidth for the video stream, the network can only sup-
port the video bitrate on a best-effort basis. If the network
bandwidth is not sufficient to support the video bitrate, then
the decoder at the client-end starts to consume the video data
at a greater rate than at which new data is being received
from the network. The decoder eventually runs out of video
data to decode, which results in a screen freeze (video stalls
or rebuffering events). In order to avoid this consequence
without having to introduce costly and complex guaranteed
bandwidth mechanisms, the following solutions have been
used to try to match the video bitrate to the available network
bandwidth [19]:
• Using a playout buffer: Short-term variations in network

throughput can be overcome by using a playout buffer.
The video player can decode the pre-fetched data stored
in the playout buffer.

2Variable bit rate (VBR) encoding methods generate variable amounts of
output data per time segment.

• Transcoding-based solutions: These solutions change one
or more parameters of the raw video data compression
algorithm to vary the resulting bitrate. Examples include
varying the video resolution, compression ratio, or frame
rate. However, this process is computationally intensive
and requires complex hardware support.

• Scalable encoding solutions: These solutions are imple-
mented by processing the encoded video data. Hence,
the encoded video can be adapted on-the-fly by using
the scalability features of the encoder. Some techniques
include adapting the picture resolution or frame rate
(by exploiting the spatial or temporal scalability in the
encoded data). However, specialised servers are required
to implement these solutions.

• Stream switching solutions: This technique is the simplest
to implement and used in CDNs. Raw video data is pre-
processed to produce multiple encoded streams, each at
a different bitrate, resulting in multiple versions of the
same content. A client-side adaptive algorithm is then
used to select the most appropriate rate given the network
conditions during transmission. These solutions do not
require specialised servers and use the least processing
power. However, more storage and finer granularity of
encoded bitrates are required to enable the client to
optimise its selection.

Considering feasibility of deployments, the industry has settled
on using playout buffers and stream switching solutions. In
order to avoid buffer under-run, the video server has to use
an appropriate sending rate. In some of the early work on
video transport, protocols such as Rate Adaptation Proto-
col (RAP) [20] and TCP Friendly Rate Control (TFRC) [21]
were defined on top of the transport layer that put the sender
in charge of varying the sending rate (and consequently the
video rate) based on feedback being received from either the
network or the receiver, forming a combination of congestion
control and flow control. RAP used a TCP-like additive in-
crease/multiplicative decrease (AIMD) scheme. TFRC uses an
additive increase/additive decrease (AIAD) scheme to adjust
the server’s sending rate by estimating the path’s throughput
based on TCP square root formula – using the path’s Round
Trip Time (RTT) and packet loss rate.

B. Video streaming evolution

The Internet was not originally designed for the sus-
tained delivery of modern bandwidth-intensive applications
such as high quality multimedia streaming. The fundamental
difference between traditional data traffic and video traffic
is the real-time constraints on video traffic. Most of the
early work on packet video transmission focused on pro-
viding real-time transmission with techniques that support
resource reservations and Quality of Service (QoS), such as
Resource ReSerVation Protocol (RSVP) [22] and Integrated
Services (IntServ) [23]. Other protocols such as Real-time
Transport Protocol (RTP) [24], Real Time Streaming Protocol
(RTSP) [25], Session Description Protocol (SDP) [26], RTP
Control Protocol (RTCP) [27] were developed over the years
to support real-time streaming over UDP and configure/control
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the end systems that support video streams. However, these
techniques have issues in traversing NATs and firewalls, and
they require dedicated servers and network infrastructure,
which increases deployment costs and added complexities.

TCP is a reliable protocol which guarantees the delivery
of data. However, this reliability comes at the expense of
variable delay as senders wait for acknowledgments (ACK)
and retransmit lost data. Since video is often delay intolerant
and often does not need high reliability to be acceptable, TCP
was initially assumed unsuitable for multimedia delivery [19].
This motivated considerable work to extend the capabilities of
UDP for carrying video streams and coexisting with regular
TCP traffic.

1) RTP and multicasting: RTP was proposed in
RFC3550 [24] as a protocol on top of UDP for real-
time streaming.UDP-based reliable data delivery and
congestion control were not part of its original specifications.
A great amount of work has been done to augment RTP
with application layer congestion control for both unicast
and multicast cases. Such techniques usually involve rate
control, that is matching the rate of the video stream to the
available bandwidth. However, both RTP congestion control
and reliability remain open issues. Although video codecs
are usually designed to deal with minor data loss, a packet
loss in an I-frame or header of an I-frame can cause serious
disruptions to the video.

With multicast it can be difficult to find a stream rate accept-
able to multiple clients having different hardware capabilities
and network resources. There are two proposed solutions: One
is to rely on the Internet to provide network QoS capabilities
(e.g. reserving resources, maintaining bounds on delay, jitter
and loss), and the other is to use adaptive bitrate techniques
to adjust the stream bitrate to the available bandwidth.

Multicast-based adaptive bitrate techniques [28] can be
classified into three main categories: single stream approaches,
replicated stream approaches, and layered stream approaches.
In the single stream approach, a single video stream is trans-
mitted to the multicast group and feedback is received from
all clients participating in the group. In the replicated stream
approach, the same video is replicated in multiple streams
(each with a different bitrate/quality) and the client can join a
stream that fits its capability. In the layered stream approach,
the server sends the video stream in multiple layers and each
client can then subscribe to a subset of layers that fits its
processing power and network speed.

Some recent work has continued to build on augmenting
RTP for video delivery, particularly in the Web Real-Time
Communication (WebRTC) framework [29], RTP multimedia
congestion control [30], [31] and multipath RTP [32], [33]
mechanisms to regulate the transmission of video packets.
Although multicast is implemented on most routers, Internet
Service Providers (ISP) generally do not enable multicast on
their networks. Because of these reasons, RTP on multicast
did not provide an attractive platform for delivery multimedia
over the Internet.

2) Peer-to-Peer (P2P) streaming: P2P networks [34] allow
users to share content without the need for centralised servers,
making it an attractive solution for delivering video over the

Internet. There are two categories of P2P systems: tree-based
and mesh-based. In tree-based systems, peers are organised in
a tree structure and video is usually pushed from the root to
subsequent levels of the tree until it reaches the leafs. Although
this model is simple and easy to control, it can be severely
affected by “peer churn” [35]. In mesh-based systems, peers
connect to a random set of neighbouring peers who watch the
same content. Peers usually exchange information about their
data availability and then they retrieve data from neighbours
when it is ready. Since each client maintains a set of peers at
any point in time, this model is much less susceptible to peer
churn than the tree-based model.

Multiple adaptive streaming techniques have been proposed
in P2P streaming systems. Layered video encoding has been
used to adaptively deliver different layers of the video the
clients. Multiple Description Coding (MDC) and network
coding has also been used to propose adaptive streaming
systems that support a large number of users. P2P streaming
in the form of BitTorrent is still popular for video file sharing
today.

3) HTTP video streaming: In the early 2000s, researchers
accepted that TCP offered some benefits for delay-tolerant
video transmission. An application layer playout buffer was
introduced to compensate for the rate fluctuations of TCP.
Leveraging HTTP on top of TCP also proved to be very
convenient, yielding several benefits (see Section III-E). The
initial implementation of delivering video over HTTP/TCP is
called Progressive Download – the client simply downloads
the entire (one) video file (with constant video quality) as fast
as TCP allows. The video player at the client-end starts video
playback before the download is complete. One major draw-
back of this technique is that different clients with different
capabilities across different network connections receive the
same video quality, which can cause unwanted playback stalls.
This led to the development of HTTP Adaptive Streaming
(HAS) or DASH3 in the mid-2000s. A DASH video client can
adaptively request different video bitrates so that it matches
the bandwidth that the network can support.

The key differences between DASH and earlier protocols
for multimedia streaming are:

• Unlike earlier UDP-based schemes, DASH is built on top
of TCP transport.

• The client drives the algorithm. Depending on its ABR,
the client typically requests video bitrates based on ob-
served network conditions, hence regulating the server’s
transmission rate.

• DASH requests and receives video data in terms of multi-
second video chunks instead of a continuous stream of
video packets.

Although various video streaming technologies mentioned
above are still in use, the video streaming industry has now
settled on DASH as the main component of video delivery
over the Internet. We elaborate on current DASH architecture
and ecosystem in Section III.

3Although the terms HAS and DASH can be used interchangeably, we will
use DASH acronym from now on.
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III. STATE-OF-THE-ART: DYNAMIC ADAPTIVE
STREAMING OVER HTTP (DASH)

This section presents an architectural overview of DASH
and its applications, the benefits of using HTTP and the
general principles driving the rate adaptation algorithms.

A. Architectural overview

In DASH systems [36] (summarised in Figure 1), video
content is encoded into multiple versions at different discrete
bitrates (representation rates). Each encoded video is then
fragmented into small video segments or chunks, each con-
taining a few seconds of video. Chunks from one bitrate are
aligned in the video time line to chunks from other bitrates so
that the client can smoothly switch bitrates, if necessary, at the
chunk boundary. Content information such as video profiles,
metadata, mimeType [37], [38], codecs, byte-ranges, server IP
addresses, and download URLs is described in the associated
Media Presentation Description (MPD) files. The MPD de-
scribes a piece of video content within a specific duration as a
Period. In a Period, there are multiple versions of the content,
each known as a Representation. In a Representation, there
are multiple video segments or chunks. URLs pointing to the
video chunks in an MPD can either be explicitly described or
be constructed via a template (client deriving a valid URL for
each chunk at a certain Representation) [36]. Video chunks
are 3GP-formatted [37], [38] and in each Representation,
there is a single initialisation segment which contains the
configuration data and many media segments. Concatenating
the initialisation segment and a series of media segments
results in a continuous stream of video. Video chunks and
MPDs are then served to clients by using standard HTTP
servers.

Media Presentation 
Description (MPD)

DASH Client

Chunks

Chunks

Chunks

Representation

Chunks

HTTP Server

Representation

Representation

Representation MPD 
Parser

DASH Adaptive Bitrate
Algorithms

Video 
player

HTTP 
Client

HTTP GET Requests

Fig. 1. DASH client-server architecture

Unlike traditional streaming strategies, DASH does not
control the video transmission rate directly. It depends on the
underlying TCP algorithm to regulate the video transmission
rate, which is determined by the congestion feedback from the
client-server network path. When a streaming session starts,
the client requests the MPD file from the HTTP server and
then starts requesting video chunks (typically in sequential
order) as fast as possible to fill the playout buffer. Once this

buffer is full, the player enters a steady state phase where it
periodically downloads new chunks according to its chosen
ABR algorithm.

In the steady state, the player is in the ON state when
it is downloading a chunk, and in the OFF state otherwise
(resulting in an alternating ON-OFF traffic pattern illustrated
in Figure 2). The time between the start of two consecutive ON
periods is termed cycle time (typically the chunk size – amount
of multimedia content within each chunk – in seconds). The
client typically keeps a few chunks in the buffer to maintain
adequate playback.

Buffer pre-filling phase Steady state ON-OFF phase

OFF

Cycle time

Download Rate

Time

ON ON ONOFF

Fig. 2. DASH’s bursty ON-OFF behaviour

The video player uses various feedback signals observed
for each chunk (such as recently achieved throughput4 and/or
playout buffer occupancy) to select a suitable video rate for
the next chunk to be downloaded. Consider an example when
using achieved throughput as a criteria. If the throughput is
high, ABR should select a higher video rate to provide better
QoE for the user. On the other hand, if the throughput is
low, ABR should dynamically switch to a lower video rate
to avoid playout buffer under-run. A good ABR algorithm
is responsive to fluctuating network conditions and adapts
smoothly to provide better QoE [39].

The presented video bitrate (or quality) is limited by the
video rates provided by the server, the information contained
in the MPD and the network bandwidth. The DASH clients
cannot match the network throughput perfectly; they can only
achieve the (discrete) video rates described by the MPD. It
will select a rate below the estimated throughput to sustain
video playback and in the case where the network bandwidth
exceeds the maximum video bitrate, the video rate is capped to
the maximum video bitrate. Hence, in some ABR approaches,
the server can artificially limit the video rate by only pro-
viding specific rates in the MPD to protect the network. The
“smoothness” between video bitrate transitions depend on the
encoding granularity (the number of video representations) of
the video content provided at the server.

4Estimated from the size of previous chunks and the time taken to retrieve
them.
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Fig. 3. Timeline illustration of DASH adaptive behaviour

As illustrated in Figure 3, the client quickly ramps up its
video bitrate request during start-up to pre-fill its playout
buffer. When the client detects a reduction in bandwidth
capacity (by utilising feedback signals from previous chunks),
it “backs off” by requesting a lower video bitrate. When the
network capacity increases again, it then restores its video
quality. As a result, the client is able to stream the video
seamlessly without having to over-provision the network or
keep an oversize playout buffer.

We illustrate the relationship between video chunk sizes
and representation rates using the publicly available “Big
Buck Bunny” dataset [40] (an open-source, 9mins 46secs
long animated video by the Blender Institute).5 Table I shows
the resolutions and representation rates of the dataset’s 20
encoding levels when chunks are encoded with 10 seconds
of video. Figure 4 shows the chunk size distributions (in
kilobytes) of six different encoding levels from Table I; video
encoded at higher bitrates results in larger chunk sizes for the
same 10 seconds of video contained within them.

TABLE I
REPRESENTATION RATES FOR 10-SEC DATASET

Resolution Encoding Level Representation Rates

320 x 240 1 - 3 45, 88, 127 kbps

480 x 360 4 - 8 177, 217, 253, 317, 369 kbps

854 x 480 9 - 10 503, 569 kbps

1280 x 720 11 - 14 0.8, 1.0, 1.2, 1.4 Mbps

1920 x 1080 15 - 20 2.1, 2.4, 2.9, 3.2, 3.5, 3.8 Mbps

5Full-length video sequences encoded at different bitrates, resolutions
and chunk sizes can be downloaded from https://www-itec.uni-klu.ac.at/ftp/
datasets/DASHDataset2014/BigBuckBunny
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Fig. 4. Size distributions of 10-sec video chunks for six representation rates

B. Live Streaming

Live streaming of events has been traditionally done by us-
ing broadcast TV. DASH can also be applied to live streaming
over the Internet [41], despite the tighter latency constraints
compared to on-demand streaming services. The challenge
of live streaming is to minimise the time (end-to-end delay)
between the content generation (at the server) and presentation
(at the client), which translates into the “liveliness” of the
video stream. Broadcast TV aim to minimise end-to-end delays
by continuously sending video content to the client. However,
in the DASH architecture, retrieval of segmented/chunked
video content is driven by the client. The processes of en-
coding, segmentation and transport video in response to the
client’s requests at the server-end add extra delays.

The main difference between on-demand streaming and
live streaming is the content generation time. In on-demand
streaming, all content at the server has been generated in
advance before streaming to the clients, whereas media content
is generated on-the-fly in the case of live streaming. DASH
may be used in both scenarios, but with key differences
in MPD fields [42]. The minimumUpdatePeriodMPD field
instructs the client to check for MPD updates for every given
interval when new live content is available (this interval is
usually few chunk-duration long). The availabilityStartTime
field associates a global UTC (Coordinated Universal Time)
time with the start time for the first period of in the MPD
and availabilityEndTime field describes the time when the live
event ends. The minBufferTime field ensures that the client
keeps at least a certain duration of content in the playout
buffer. The client will need to be aware of the “live-point” and
select the appropriate period by frequently updating the MPD
if the minimumUpdatePeriodMPD field is specified. This tech-
nique is also used for inserting advertisements and commer-
cials during live sessions. DASH standard [36], [13] does not
require frequent MPD updates for live sessions, so the MPD
can describe future video chunks and the associated URLs,
the client will then need to determine the latest available video
chunk using the current time and availabilityStartTime field.

Client-side ABR algorithms used in on-demand streaming
can be generally applied to live streaming [43]. There are

https://www-itec.uni-klu.ac.at/ftp/datasets/DASHDataset2014/BigBuckBunny
https://www-itec.uni-klu.ac.at/ftp/datasets/DASHDataset2014/BigBuckBunny
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methods in controlling the chunk duration [44] and HTTP
request strategies [45] in order to maintain a high liveliness
and seamless playback of live content.

C. Mobile/Cellular streaming

Mobile video traffic represent a growing fraction of total
mobile traffic, accounting for more than half of total mobile
traffic in 2015, and is expected to reach 75% in 2020 [46].
Streaming multimedia using DASH over mobile/cellular net-
works to mobile devices (e.g. smartphones, tablets, laptops)
presents additional challenges due to limited cellular coverage,
unpredictability of the path characteristics leading to high
latency, and the heterogeneity of mobile devices (e.g. various
CPU power, screen resolutions). Highly variable bandwidth
and limited resources in mobile networks compared to fixed
networks mean that TCP’s behaviour can be different, which
in turn affects the ABR selection process. Mobile networks
typically have higher latency, more congestion and higher
packet loss rates when compared with wired networks, leading
to more TCP retransmissions which in turn degrades the
timeliness of video packet arrivals. [47] provides an overview
of the mobile content delivery architecture and discusses
various methods, including traditional RTSP/RTP, progressive
HTTP download, paced HTTP download, HTTP-based adap-
tive streaming used in delivery on-demand and live video
content to mobile devices.

In [48] and [49] the authors analysed the behaviour of mo-
bile clients when streaming on-demand and live video from an
ISP perspective. They also analysed the video bitrate switching
frequency and caching performance in mobile networks. They
determined that the Log-normal distribution is best used to
describe the number of chunks requested for both on-demand
and live sessions for the first 40 chunks (this distribution is
also used to described various mobile communication patterns,
such as call holding times and mobile file transfer). When the
stream exceed 40 chunks, the Generalised Pareto Distribution
best models the behaviour.

Mobile DASH ABR algorithms are broadly the same, with
some works proposing various enhancements to the client and
cellular access points [50], [51], [52], [53], [54].

D. Standardisation

Move Networks (now acquired by Echostar) was an early
proponent of HTTP-based adaptive streaming technology and
was awarded a fundamental patent [55] on adaptive streaming
by the United States Patent and Trademark Office (USPTO)
in 2010. The patent covers the invention of video streaming
over packet-switched networks, particularly the structure of
video content and the intelligent requests sent by clients which
allows for adaptive rate-shifting over IP networks.

MPEG-DASH has been standardised by 3GPP [56] (first
open as Work Item in January 2009 and finalised in March
2010) and became an ISO/IEC (International Electrotechnical
Commission) standard for adaptive streaming in 2012 [13].
The standard defines guidelines for media presentation, seg-
mentation, and a collection of standard XML formats for

the manifest file (MPD). However, specific client implemen-
tation and rate adaptation techniques are not part of the
standard [36]. Hence, commercial streaming services that use
DASH implement their own proprietary techniques both for
media representation and for client adaptation. DASH has
subsequently being adopted by other standardised multimedia
streaming systems such as IPTV (Open IPTV standard [57])
and Digital Video Broadcasting (DVB) [58] as a standard for
transporting video over the Internet.

The DASH Industry Forum (DASH-IF) [59] (a group con-
taining leading streaming companies) drives the adoption and
research in modern adaptive streaming technologies. DASH-IF
provides specific implementation guidelines and regular doc-
umentation of interoperability [60]. The community has also
developed an open-source dash.js [61] reference player, which
employs Media Source Extensions (MSEs) in a web/HTML5-
based6 video player for research and testing purposes. DASH-
IF also provides and compiles a comprehensive list of publicly
available test datasets [62], video players/clients [63], software
for content preparation and validation [64].

E. Benefits of using HTTP

By using HTTP on top of TCP, DASH yields the following
benefits:
• Clients use the standard HTTP protocol which provides

more ubiquitous reach as HTTP traffic can traverse NATs
and firewalls [65].

• DASH servers are regular commodity Web servers, which
significantly reduces the operational costs and allow the
deployment of caches to improve the performance and
reduce the network load.

• A client requests each video chunk independently and
maintains the playback session state, so servers do not
need to track session state. Maintaining session state at
the client means clients can retrieve video chunks from
multiple servers with load-balancing and fault tolerance
between commodity HTTP servers [66], [67].

• Relying on TCP reliability and inter-flow friendliness
improves the likelihood that streaming traffic consumes
only a fair fraction of the network bandwidth when
sharing with other traffic.

These advantages enable service providers to leverage existing
and significantly cheaper HTTP infrastructures. Proprietary
commercial systems such as Microsoft’s Smooth Stream-
ing [16], Adobe’s HTTP Dynamic Streaming (HDS) [17] or
Apple’s HTTP Live Streaming (HLS) [18] leverage existing
CDNs and proxy caches.

F. Quality of Experience (QoE) metrics

Like other applications, multimedia content delivery over IP
networks has to cope with inherent network QoS limitations.
Bottlenecks can occur in various places such as at the server-
end, ISP networks interconnection, the access link, the last-
mile or within the home network. When traffic overloads these

6The web community is moving away from Adobe Flash towards pure
HTML5. For example, starting from version 55, Google Chrome turns Flash
player off and runs HTML5 by default on most sites.
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bottlenecks, delays and packet losses occur, which can strongly
impact the user’s QoE. Since DASH is layered on top of
TCP, its behaviour can be unpredictable due to TCP’s dynamic
behaviour, hence having various impact on QoE. Achieving
high QoE is a major challenge due to the sheer diversity of
video-capable devices (smartphones, tablets, desktops, smart-
TV) and how they are connected to the network (cable, fibre,
DSL, WiFi, cellular wireless), each providing different link-
layer bandwidth characteristics.

With the advancement in DASH-based technologies, there
is a noticeable shift from traditional QoE measurement on
video quality (e.g. Peak Signal-to-Noise Ratio) and user expe-
rience (e.g. subjective mean opinion scores) to more complex
quality metrics (e.g. rebuffering time, video bitrate, startup
delays) and engagement-centric metrics (e.g. views per video,
viewing duration). Optimising DASH’s QoE is a challenging
goal because these metrics are often interdependent, having
counter-intuitive and complex relationships. Seufert et al. [68]
provides a comprehensive survey of the available QoE metrics
investigated in both industry and academic research, hence we
only present some of the key works on QoE measurements
here.

In one of the early works investigating QoE [69], Cranley
et al. claimed that there exists an encoding which maximises
QoE for a given target bitrate which can be extended to optimal
adaptation trajectory for a whole video stream. They focused
on the adaptation of MP4 video streams within a 2D space
defined by frame rate and spatial resolution. Comparing clips
with similar bitrates, they showed that reduction in frame rate
is perceived as being worse than the reduction in resolution.

These implications can also be applied to DASH in terms
of users’ sensitivity to frequent bitrate switches. In [70] Mok
et al. showed that DASH streams’ initial delay and stalling
or rebuffering are the key influencing factors of QoE. They
also showed that the change in video quality introduces a new
perceptual dimension. Dobrian et al. [71] quantified the impact
of different video types and quality (live, long/short video-
on-demand) on user engagement at a per-view and per-user
level using Kendall correlation. They found that rebuffering
has the largest impact on QoE across all types of content,
particularly live content. Average bitrate was also found to
play a significantly more important role in live content than
in on-demand content.

Balachandran et al. [72] identified the challenges in convert-
ing low-level quality metrics (buffering, start-up time, bitrate,
bitrate switches) into a unified QoE. Since these metrics are in-
terrelated in complex counter-intuitive ways, their relationship
can be unpredictable. The nature of the content can complicate
the interactions as well. Hence, they believe there is a need to
develop a unified (how the set of QoE metrics taken together
impact quality) and quantitative (how much does changing
one metric impacts user engagement) understanding of how
low-level quality metrics impact measures of experience. They
showed that the issue of inter-dependency can be addressed
by using a machine learning approach to build a suitable
predictive model of user engagement from empirical obser-
vations. The same authors published a follow-up paper [73]
and presented a data-driven predictive model of Internet video

QoE. This machine learning approach captures the interactions
between various metrics as well as their confounding effects.
They demonstrated significant practical benefits that can be
reaped by content providers when using such a predictive
model.

G. General ABR principles and goals

DASH uses ABR algorithms to select the appropriate video
bitrates dynamically upon changing network conditions,which
involves two control loops [19] as shown in Figure 5:

• The inner TCP congestion control loop reacts to network
congestion and tries to match the sending rate with the
rate sustainable by the network.

• The outer ABR selection loop reacts to the rates that TCP
dictates and tries to match the video bitrate to the average
observed TCP rate/throughput.

“last-mile”
AQMs / FIFO

DASH Adaptive Bitrate (ABR) 
Control Loop

HTTP server
TCP 

Send Buffer
TCP 

Receive Buffer

CDNs / caches

Playout 
buffer

Decoder

TCP Congestion Control Loop
with queue management feedback

Encoded 
media source

Fig. 5. Dual control loop with queue management feedback in DASH systems

The TCP control loop operates over the path’s delay (typ-
ically in terms of milliseconds), whereas the ABR control
loop operates over a larger time period (typically in terms
of seconds). Typically, the ABR control loop does not try to
match the short-term fluctuation of TCP throughput rather it
tries to match a throughput averaged over a period of time.

The general goals of ABR [19] are:

1) Avoid playback interruptions caused by buffer under-
runs.

2) Maximize the video quality (trade-off with goal 1 be-
cause it is always possible to minimize the number of
interruptions by always transmitting at the lowest rate).

3) Minimize the number of video quality shifts to improve
user experience (trade-off with goal 2 because the algo-
rithm can maximize the video quality by reacting to the
smallest changes in the network bandwidth, which, in
turn, increases the number of quality shifts).

4) Minimize the time between the user making a request
for a new video and the video actually starting to play
(trade-off with goal 2 by using the lowest bitrate at the
start).

The core challenge for ABR design is balancing these goals
and ultimately providing a high QoE for end-users.
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IV. CLIENT-SIDE RATE ADAPTATION TECHNIQUES

This section presents a survey of the research literature on
client-side rate adaptation techniques.

Wang et al. [74] presented one of the most notable works in
modelling multimedia streaming traffic over TCP in the early
days of TCP-based streaming. This work forms the basis for
other extended analysis and modelling described in [75], [76],
[77]. The authors developed an analytic performance model to
assess the performance of TCP when used to transport video
streaming traffic without quality adaptation. Both theoretical
and experimental results considered a constant bitrate encoded
source, proved that TCP requires a network bandwidth that
is roughly twice the video rate in order to achieve a good
performance in terms of startup delay and percentage of late
packet arrivals. However, this leads to wasting half of the
bandwidth, prompting researchers to explore different adaptive
streaming mechanisms to optimise both bandwidth usage and
user’s viewing experience.

Client-side ABR algorithms can be broadly classified into
three categories based on the feedback signals they use:
throughput-based, buffer-based and hybrid/control theory-
based. We will look at examples of all three ABR approaches.

A. Throughput-based ABR

This class of algorithms rely on the TCP throughput (as
estimated by the application layer) as the feedback signal for
selecting subsequent video chunks. Throughput-based algo-
rithms differ in terms of how they estimate throughput and
how they use the estimates.

1) TCP-like AIMD based: Liu et al. [78] proposed a method
that uses smoothed HTTP/TCP throughput measurement with
TFRC/TCP-like AIMD (conservative step-wise up switching
and aggressive down switching of representations) rate adapta-
tion. This method does not require transport layer information
such as packet loss rates and RTT. The method is capable
of using smoothed throughput measurements to probe spare
network capacity and detect congestion. It compares the chunk
transfer (fetch) time with the media playback time contained
in the chunk. The rationale is that a multi-second chunk is
sufficient to smooth out short-term TCP throughput variations.
A step-wise switch-up method (additive increase) is used to se-
lect higher representation for probing spare network capacity.
An aggressive switch-down (multiplicative decrease) method
is deployed upon detecting network congestion to prevent
rebuffers. The algorithm also takes into account the idle time
calculation to prevent client buffer overflow and consequently
saving network bandwidth and memory resources.

The authors of [78] tested their methods using ns-2 [79]
simulations and concluded that their results show the efficiency
in detecting congestion and network capacity probing. They
also showed that the retrieved video bitrate can quickly and
accurately reach its optimum level.

2) FESTIVE: Jiang et al. [80] identified issues when mul-
tiple commercial DASH players share a bottleneck link with
respect to three metrics: fairness, efficiency, and stability.
The authors presented a principled understanding of bitrate
adaptation and analysed several commercial players through

the abstract player model consisting of bandwidth estimation,
bitrate selection, and chunk scheduling components. They
developed a suite of techniques that systematically guide the
trade-offs between stability, fairness, and efficiency and this
proposed a general framework for robust video adaptation.

Three potentially conflicting goals are identified in [80] that
a robust ABR algorithm must strive to achieve (for N players
sharing a bottleneck link with capacity W , with each player
x playing/retrieving video bitrate bx,t at time t):

• (Un)Fairness: Multiple competing players sharing a bot-
tleneck link should be able to converge to an equitable
allocation of the network resources. Unfairness is defined
as
√
1− JainFair, where JainFair is the Jain Fairness

Index [81] of bx,t over all player x. A lower value means
fairer allocation.

• (In)Efficiency: A group of players must choose the high-
est feasible set of bitrates to maximize the user experi-
ence. The inefficiency at time t is defined as |

∑
x bx,t−W |

W ,
where a value close to zero implies that the players in
aggregate are using as high an average bitrate as possible.

• (In)Stability: A player should avoid needless bit-rate
switches as this can adversely affect the user experience.
The weighted sum of all switch steps observed within the
last k = 20s divided by the weighted sum of the bitrates
in the last k = 20s , the weight function w(d) = k−d is
used to add linear penalty to more recent bitrate switch.
The instability metric is defined as∑k−1

d=0 |bx,t−d − bx,t−d−1|w(d)∑k
d=1 bx,t−dw(d)

Unfairness, inefficiency and instability of players arise as
a result of overlaying bitrate adaptation algorithms on top
of several logical layers of network stack. Consequently, the
feedback signal that the player receives from the network
is not a true reflection of the network state. Furthermore,
the feedback signal can be biased by the scheduling and
bitrate selection decisions executed by the player. Periodic
chunk scheduling combined with stateless bitrate selection was
observed in [80] to create undesirable feedback loops with
respect to the bandwidth estimation logic, causing unnecessary
bitrate switches and potentially unfair allocation of bitrates.

At a high-level, the three-step process is: schedule when
the next chunk will be downloaded, select a suitable chunk
bitrate, and estimate the network bandwidth. The harmonic
bandwidth estimator computes the harmonic mean of the
throughput estimates for the last 20 seconds. The stateful and
delayed bitrate update receives the throughput estimates from
the bandwidth estimator and computes a reference bitrate.
The randomised scheduler schedules the next chunk to be
downloaded immediately if the playout buffer is less than
the target buffer size. Otherwise, the next chunk is scheduled
with a random delay by selecting a randomised target buffer
size. The authors of [80] recommended randomised chunk
scheduling to avoid synchronisation biases in sampling the net-
work state; stateful bitrate selection that compensates for the
biased interaction between bitrate and estimated bandwidth; a
delayed update approach to trade-off stability and efficiency
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and a bandwidth estimator that uses the harmonic mean of the
download speed over 20 recent chunks.

FESTIVE was implemented using Adobe’s Open Source
Media Framework (OSMF) [82] and compared it against
several real and emulated commercial players across a range
of scenarios that vary the bandwidth and number of users.
FESTIVE was found to improve fairness by 40%, stability by
50% and efficiency by at least 10%. FESTIVE is robust to the
number of players sharing a bottleneck, increase in bandwidth
variability, and the available set of bitrates. FESTIVE is
a client-side ABR with low implementation overhead and
requires no modifications to the network or servers.

3) CS2P: Sun et al. [83] developed CS2P (Cross Session
Stateful Predictor) to improve the bitrate selection and adapta-
tion in video clients by using data-driven throughput prediction
algorithms. They made three-fold contributions in their paper.

Firstly, they analysed the throughput characteristics of a
large dataset provided by iQIYI, a commercial provider in
China, which consists of 20 million sessions covering 3 million
unique client IP addresses and 18 server IP addresses. They
concluded that sessions sharing similar key features (e.g. ISP,
geographical region) have similar network layer throughput
values and dynamic patters, and there is a natural stateful
behaviour in throughput variability within a session. This
finding is similar to [84], where similar sessions have similar
QoE performance at the application layer. However, there
exists a complex relationship between session features and
throughput. A client’s perceived throughput is often influenced
by multiple factors simultaneously, such as last-mile link
technology, server load, backbone network congestion, which
means that client sharing one of the features may not have
similar throughput.

Secondly, the authors developed CS2P, a throughput pre-
diction system that uses data-driven approach to learn clusters
of similar sessions, predicts initial throughput, and models the
stateful evolution of midstream throughput (intra-session) with
a Hidden-Markov-Model.

Thirdly, they integrated CS2P in a dash.js client and showed
with real-world deployment that it outperforms existing pre-
diction approaches by 40% and 50% in terms of initial
and midstream throughput prediction error. Besides, when
combined with Model Predictive Control (MPC) [85] (see
Section IV-C5) rate adaptation algorithms, CS2P has an overall
improvement of 3.2% on QoE and 10.9% on average video
bitrate over pure MPC with Harmonic Mean strategy. CS2P
can also accurately predict the total rebuffering time at the start
of the session. CS2P’s session clustering approach is similar
to that of [84] but it clusters sessions based on throughput
prediction accuracy rather than application layer QoE metrics.

B. Buffer-based ABR

1) Buffer based rate selection: Huang et al. [86], [87],
[88] are the first to propose, experimentally evaluate and
field-test a pure buffer-based rate adaptation algorithm as
illustrated in Figure 6. They demonstrated the challenges in
estimating future capacity in commercial services caused by
wide capacity fluctuations. Hence, they proposed an algorithm

that uses only the buffer (by picking a video bitrate purely
based on current buffer occupancy) during steady-state phase
and probes for capacity estimation when the buffer is too low
(not enough information for decision making, e.g in the start-
up phase). They field-tested their algorithm in Netflix’s clients
and showed that this approach reduce the rebuffer rate by
10-20% compared to Netflix’s then-default algorithm, while
delivering a similar average video rate, and a higher video
rate in steady state.

Buffer occupancy

Video rate

Rmax

Rmin

upper 
reservoir

reservoir cushion

feasible region

f(B)
Boundary of 

safe area

Rmin

BmaxBmB

Fig. 6. Buffer-based adaptation rate map (adapted from Figure 6 in [86])

Figure 6 illustrates the approach’s rate map – any curve
f(B) within the feasible region can produce a video rate
between Rmin and Rmax given the current buffer occupancy.
The lowest bitrate is selected when the buffer is filling reser-
voir B, after the reservoir is filled it selects the bitrate based
on f(B) algorithm. The buffer space between the reservoir
and the point where f(B) first reaches Rmax is the cushion
and the buffer after the cushion is the upper reservoir. The
buffer has to be maintained above the reservoir so that there
is enough buffer to absorb the variations caused by varying
capacity. Hence, f(B) will always download a chunk before
the buffer shrinks into the reservoir area (operating in the safe
area), otherwise it is in the risky area (boundary drawn in red
dashed line).

2) Threshold based buffer : Miller et al. [89] proposed
an algorithm that uses three threshold levels for the playout
buffer, such that 0 < Bmin < Blow < Bhigh. The target interval
Btarget is between Blow and Bhigh, and the optimum interval
Boptimum is the centre of the target interval. The algorithm
keeps the buffer level close to Boptimum. It allows the designer
to explicitly control the trade-off between the variation in
buffer occupancy and fluctuations in video bitrate in response
to varying TCP throughput by controlling the Blow and
Bhigh thresholds. They evaluated their prototype in real-world
scenarios and found that it performs well under challenging
situations. They ran simple flow with or without rate limiting
experiments in a testbed and run real-world experiments in
busy domestic WiFi environment. They observed that the
algorithm managed to exhibit a stable and fair behaviour when
multiple clients share a common network path.
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3) Buffer Occupancy based Lyapunov Algorithm (BOLA):
Spiteri et al. [90] formulated ABR as a utility maximisation
problem and devised an online control algorithm, using Lya-
punov optimisation techniques to minimise rebuffering and
maximise video quality. BOLA achieved a time-average utility
that is within an additive factor of the of the optimal value.
This algorithm is also pure buffer-based algorithm which does
not require any network bandwidth estimation and prediction.

BOLA uses a utility maximisation problem that incorporates
both key QoE metrics – the average video bitrate and the
rebuffering duration. An increase in the average bitrate in-
creases utility, whereas rebuffering decreases it. The advantage
of this framework is that utility can be defined in many ways,
depending on the video content, provider and devices. This
algorithm provides a theoretical guarantee on the achieved
utility and provides an explicit knob for video providers to set
the relative importance of a high video quality in relation to the
probability of rebuffering. They provided the first theoretical
justification for the reason buffer-based algorithms perform
well in practice. However, BOLA assumes that the buffer level
is at a sufficient level to provide all the information about past
bandwidth variations.

The authors evaluated BOLA on 12 test vectors provided
by DASH-IF with 85 publicly available 3G mobile bandwidth
traces. They compared the results with an optimal offline al-
gorithm that guarantee the maximum achievable time-average
utility for any given network trace (having the perfect knowl-
edge of future bandwidth variations) and found that BOLA
achieve within 84-95% of the offline optimal utility in all
test cases. The authors also compared BOLA with ELASTIC
and PANDA (presented in Section IV-C), and concluded that
BOLA is superior in terms of higher utility and consistency.

BOLA is now part of an experimental algorithm integrated
in dash.js [61] since version 2.0.0.

4) ABMA+: Beben et al. [91] proposed an enhanced
ABMA+ (Adaptation and Buffer Management Algorithm),
which selects video representation rates based on the pre-
dicted probability of video freezing (inferred from the buffer
occupancy). It continuously estimates segment download time
characteristics and uses the pre-computed playout buffer map
to select the maximum video representation which guarantee
smooth content playout. Using a pre-computed buffer map
minimises computation costs and simplifies deployment on
different terminals. The authors validated ABMA+ with sim-
ulations and experimental trials using VLC player’s DASH
plugin [92]. They also compared their approach with rate and
other buffer-based approaches and confirmed that ABMA+
more efficiently adjust video representations to variable net-
work conditions, minimising video freezing and preventing
frequent video representation switches. The authors also pro-
posed an improved model for DASH systems that use buffer
maps that closely reflect the impact of adaptation control logic
by using state dependent description of the arrival process.

C. Hybrid/Control Theory-based ABR

ABR heuristics based on control theory use both through-
put estimates and buffer occupancy as indicators of network

conditions and repeatedly (re)solve a control theory/stochastic
optimal control equation for selecting the representation rate
to satisfy users’ QoE preferences.

1) Smooth Rate Adaptation: The work done in [39]
and [93] aim to control the playout buffer occupancy, keeping
it to a reference level and uses the difference between the
current buffer level and reference level to drive the control
loop. Then, the equations for the predicted video rate can
be derived as a function of the buffer size difference and
the estimated TCP throughput which in turns determines the
buffer occupancy level in combination with the actual TCP
throughput, thus closing the control loop.

Trying to keep the playout buffer at a certain reference
level turns out to not be the most suitable way to drive
the control loop. From the users’ point of view, it is more
important to receive the highest (and most consistent) video
quality sustainable while reducing bitrate fluctuations. The
model described above does not take into account the bitrate
fluctuations.

2) PANDA: Zhi et al. [94] used testbed experiments to
demonstrate the fundamental limitations of relying solely on
throughput estimates. They showed that when multiple DASH
clients compete at a network bottleneck, the discrete nature of
the video bitrates results in difficulty for a client to correctly
perceive its fair-share bandwidth. This leads to video bitrate
oscillations and low QoE. Hence, they proposed a Probe And
Adapt (PANDA) mechanism for bitrate adaptation which is
akin to TCP congestion control. PANDA probes the network
by setting a target average data rate, then this data rate is subse-
quently used to determine the next video chunk bitrate and the
subsequent request interval. Its AIMD probing mechanism is
similar to TCP congestion control. The fundamental difference
is that TCP congestion control detects congestion when there
are packet losses (loss-based) or increases in RTT (delay-
based), whereas PANDA detects congestion with the reduction
of throughput. This property ensures that PANDA is able to
efficiently utilise the network bandwidth, and in the presence
of multiple clients, the bandwidth for each client eventually
converges to a fair-share level. PANDA schedules the next
request by considering the average target rate and buffer level.
It presents a buffer filling based adaptation algorithm that
solves the quality selection optimisation problem, and uses
peak signal to noise ratio (PSNR) to capture QoE. Using
testbed experiments, they showed that PANDA is able reduce
video instability by over 75% when compared with other
conventional algorithms, without rebuffers.

3) SQUAD: Wang et al. [95] proposed Spectrum-based
Quality Adaptation for DASH (SQUAD) using both through-
put and buffer feedback to develop a spectrum-based quality
adaptation technique to ensure high QoE. The authors aim
to maximise the average quality and minimise the number of
quality changes. They use “spectrum” (a centralised measure
for the variation of quality bitrates around the average quality)
as a metric to capture QoE, and claimed that SQUAD solves
the discrepancies of application layer bandwidth estimation
and the underlying transport protocol by rate estimation.
SQUAD was tested against multiple DASH players in a
controlled testbed and in a cross-Atlantic Internet environment.
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While trading off little to nothing in terms of average bitrate,
SQUAD was seen to provide significantly better QoE in terms
of quality switching frequency and magnitude (spectrum).

4) SABRE: Mansy et al. [96] demonstrated and quantified
the bufferbloat [97] effect of DASH flows on other applications
sharing the same bottleneck in a home network. Hence, they
developed Smooth Adaptive Bit RatE (SABRE) in VLC player
to mitigate this problem. They showed that SABRE can reduce
queuing delays and significantly reduce the bufferbloat effect.

SABRE dynamically adjusts the TCP receive window
(rwnd) in a DASH client from the application layer so that
the burst size from the server to client is effectively reduced to
the average queue size of the home router. The key techniques
are: HTTP pipelining, controlling video chunk download rate
and dual backoff or refill mode of operation.

HTTP pipelining is used to send multiple HTTP GET re-
quests simultaneously to keep the client receive buffer always
full, so it does not advertise a large rwnd. SABRE computes
the number of HTTP requests the client should pipeline by
using information on the actual size of the receive buffer,
the chunk size and chunk bitrate. The algorithm controls the
download rate at the application by computing the rate of the
socket recv call so that the achieved download rate at any
point is not much higher than the video bitrate. The rationale
is to control the rate at which the application read from the
receive buffer, hence controlling the growth of rwnd. Since,
the there is no need to read data from the socket buffer at a
rate higher than the video bitrate, SABRE distributes the recv
calls uniformly over the chunk size (in secs). This maintains
a steady download rate close to the target rate for a period of
chunk size, and controlling the growth of rwnd. SABRE also
uses the playout buffer occupancy for video bitrate switch-up
or down, operating in a refill mode and a backoff mode. When
the playout buffer level drops below a threshold, it operates
in refill mode, once it exceeds another threshold, it enters the
backoff mode to prevent overfilling the playout buffer.

The authors also ran experiments where multiple clients
(SABRE and traditional players) compete for bandwidth and
showed that SABRE can coexist well with other players
without having performance penalties.

5) Model Predictive Control : Yin et al. [98], [85] proposed
a Model Predictive Control (MPC) based algorithm that can
optimally combine throughput and buffer occupancy feedback
signals and formulated the rate selection problem as a stochas-
tic optimal control problem. MPC attempts to predict key
environment variables over a moving look-ahead horizon and
solve an exact optimisation problem based on prediction. It
can also explicitly handle complex and control objectives and
constraints and has a set of well understood tuning parameters,
such as prediction horizon. In this algorithm, MPC predicts
the expected throughput for the next few chunks and using
this to make optimal bitrate decision for QoE maximisation.
They implement the variants of the algorithms – FastMPC,
RobustMPC under dash.js, and validated their approach using
realistic trace-driven emulations. The theory takes multiple
constraints into account for deriving the optimal bitrate, and
provides a framework for comparing the emulated or actual
performance of algorithm with the “ideal” (best possible)

performance of the algorithm.
They proposed a comprehensive QoE metric that is a

weighted combination of the average video quality, the average
quality variations, rebuffering time and the startup delay. The
MPC model attempts to solve the maximisation problem for
video QoE, whose key elements are defined as (Rk, Bk and Ck

represents the video bitrate, buffer occupancy and bandwidth
capacity for chunk K respectively):
• Average video quality – the average per-chunk quality

over all chunks:
1

k

K∑
k=1

q(Rk)

• Average quality variations – the magnitude of changes in
the quality from one chunk to another:

1

K − 1

K−1∑
k=1

|q(Rk+1)− q(Rk)|

• Rebuffer – rebuffering occurs when the download time
is higher than the playout buffer level, hence the total
rebuffer time is defined as:

K∑
k=1

(
dk(Rk)

Ck
−Bk)+

• Startup delay – the time between user clicking the “play”
button and actual video playback, defined as Ts.

The combined QoE metric of video chunk 1 through K is
defined as:

QoEK
1 =

K∑
k=1

q(Rk)− λ
K−1∑
k=1

|q(Rk+1)− q(Rk)|

− µ
K∑

k=1

(
dk(Rk)

Ck
−Bk)+ − µsTs

where users will assign different weights (using λ, µ,
µs) based on which of the four components is the more
important to them. Larger weighting parameters indicate a
higher concern for that particular components.

MPC has an offline optimisation outside the client for differ-
ent scenarios, and an online section which uses table lookups
to point to the per-calculated solutions. Bandwidth prediction
is used for chunk selection, but its performance very much
depends on the accuracy of the prediction, which in turn relies
on the exhaustive offline optimisation computation outside
the client. The authors compared MPC with other algorithms
(rate-based, buffer-based, default dash.js and FESTIVE) and
confirm the advantages with negligible increase in computation
and memory requirements (inside the client).

6) ELASTIC: As identified by [99] and [87], the DASH
steady-state ON-OFF traffic pattern can cause unfair band-
width utilisation, server bandwidth under-utilisation, frequent
bitrate switches in the presence of other video streams or
long-lived/greedy TCP flow. Hence, De Cicco et al. [100] pro-
posed ELASTIC (fEedback Linearisation Adaptive STreamIng
Controller), which use feedback control theory that does not
generate an ON-OFF traffic pattern.
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Unlike conventional approaches that uses two controllers
(one to throttle video bitrate, another to regulate buffer level),
ELASTIC only uses one controller that computes the video
bitrate level to drive the playout buffer to a fixed set-point.
ELASTIC generates a traffic pattern that is identical to any
long-lived TCP flow. Using a controlled testbed, the authors
investigated if ELASTIC can fully utilise the bottleneck, fairly
share the bottleneck and obtain a fair share when TCP greedy
flows share the bottleneck with video flows. They concluded
that ELASTIC achieves a very high fairness and is able to get
the fair share when coexisting with TCP greedy flows.

The authors also compared ELASTIC with PANDA and
FESTIVE in scenarios where multiple DASH flows are com-
peting with and without long-lived TCP flows. They found
that all three algorithms manage to achieve a fair share of
bandwidth when there are only DASH streams, but when
competing with greedy TCP flow, ELASTIC is able to achieve
a fair share while providing high quality video with minimal
bitrate switches.

V. SERVER-SIDE, TRANSPORT LAYER AND NETWORK
LAYER CONSIDERATIONS

We now look at some existing server-side, transport layer
and network-level solutions for optimising DASH-based mul-
timedia streaming. Although most work has proposed adaptive
bitrate selection on the client-end due to its ease of implemen-
tation and scalability, there has been some work on optimising
server-side bitrate selection and congestion control.

We exclude server side optimisations based on chang-
ing the representation encoding schemes, such as moving
from H.264/AVC (Advanced Video Coding) codecs to SVC
(Scalable Video Coding) or HEVC (High Efficiency Video
Coding) encoding in order to reduce storage requirements and
improve caching efficiency. Instead we focus on the server-
side application layer and transport layer optimisation to serve
the pre-encoded video chunks stored in a regular web server,
and look into alternative transport protocols and in-network
solutions proposed in recent research literature.

A. Server-side application layer

1) Bitrate switching: Akhshabi et al. [101] proposed a pure
server-based traffic shaping method to reduce video bitrate
oscillations and instability due to multiple players competing
for bottleneck capacity. The root cause is the ON-OFF activity
pattern, which can (depending on the temporal overlap of
players’ ON-OFF period) lead to bandwidth overestimation,
and oscillations between video bitrate levels. They developed
a shaping module that limits the throughput for each chunk to
the encoding rate of the chunk, so that the download duration
will roughly equal to the chunk duration, reducing/eliminating
the OFF period (as long as the available bandwidth is higher
than the shaping rate).

Their approach aims to stabilise the players and allow the
player to request the highest video bitrate that will not lead to
oscillations. By experimentally evaluating their method with
different scenarios (multiple shaped/unshaped players, com-
peting with a persistent TCP transfer) the showed significantly

reduced instability without a significant loss of bandwidth
utilisation (aggregate throughput/available bandwidth).

Shaping introduces extra overhead, so it is only activated
when the server detects oscillations. This method is client-
independent, but assumes that the players receive most succes-
sive video chunks from the same server (which is not always
true in real-world situations). In addition, if traffic shaping if
turn on all the time, the server cannot detect the bandwidth
variations. Hence the module is occasionally deactivated to
allow the server to estimate the available bandwidth based on
the TCP throughput of unshaped chunks.

De Cicco et al. [102] proposed a control-theoretic server-
side stream-switching technique using a Quality Adaptation
Controller (QAC). This method employs feedback control
theory based on the client’s feedback to serve a particular
video bitrate. QAC utilises two controllers: a playout buffer
level controller whose goal is to drive the buffer length to
a target length; and a stream-switching logic that selects the
appropriate video level to be streamed. They compared their
prototype with Akamai’s Adaptive HD video server and found
that QAC is able to throttle the video quality to match the
available bandwidth with a transient of less than 30secs, it
fairly shares the available bandwidth in the presence of cross-
traffic, and Akamai underutilises the available bandwidth due
to conservative heuristics. Mueller et al. [103] proposed an
adaptation algorithm implemented at the proxy level by using
the concept of fairness regarding client cluster.

2) Video pacing: In [104] Alcock and Nelson revealed that
YouTube uses an application flow control technique, called
“block sending algorithm”. Satoda et al. [105] introduced a
server-side adaptive video pacing algorithm that delivers video
data just-in-time, known as “Zippy pacing”. The technique
delays the delivery of a chunk after the video server finishes
sending the previous chunk. Firstly, the video server sends
video chunks with no delay until the playout buffer reaches a
sufficient amount of data. Subsequently, Zippy pacing calcu-
lates the pacing delay. It tries to keep the playout buffer size
as close as possible to a configured value by controlling the
sending of video chunks. This method addresses the problem
of bandwidth wastage caused by unnecessary data download
(users do not finish watching the video stream all the time).
The algorithm processes the characteristics of predicting the
future stochastic diffusion of TCP throughput. Instead of
predicting a decisive value, their method predicts a stochastic
throughput diffusion by using a Brownian motion model as the
stochastic process model. It controls the target playout buffer
size while taking into account future throughput. This method
allows network operators to manage their bandwidth better for
video traffic while maintaining QoE. The authors conducted
experiments in both High Speed Downlink Packet Access
(HSDPA) and Long Term Evolution (LTE) environments and
showed that the method can decrease the playout buffer size
by up to 42%.

B. Server-side transport layer

1) Impact of TCP under DASH: To understand the need
for server-side transport layer modifications, we first present
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the impact of TCP on DASH traffic. The timeliness (and
therefore the rate) of chunk delivery can vary widely depend-
ing on the bottleneck network bandwidth, RTT delays, queue
management and other cross-traffic competing for the path
capacity. The use of TCP also means a DASH stream may
cause collateral damage to other traffic sharing a network layer
bottleneck [96].

The DASH server’s TCP stack maintains a running estimate
(the congestion window, cwnd) of how many bytes can be ‘in-
flight’ and unacknowledged at any given time. cwnd starts
low7, grows as packets are received and acknowledged by the
client, and shrinks when packets are lost or the connection
goes idle for too long [106]. A DASH client’s chunk retrieval
process means TCP sends repeated bursts of packets followed
by idle periods. If cwnd is too low, or fails to grow quickly
enough, the DASH client experiences low chunk-throughput
and if cwnd exceeds the path’s bandwidth-delay product
(BDP), the it will start filling bottleneck queues and induces
queuing delays on other flows.

Huang et al. [87] analysed the interactions between TCP
and DASH traffic by analysing traffic generated by major
streaming services, and identified a vicious cycle they termed
a “downward spiral”. This phenomenon is due to the fact
that TCP resets cwnd to its initial value due to inactivity
longer than the current retransmit timeout (around 200ms
in their experiments) during the OFF period. Consequently
cwnd ramps up in slow start mode to retrieve each new
chunk. With no competing flows, the client still selects the
highest sustainable video bitrate. However, when competing
flows are present, the video flow is inflicted by high packet
losses and low throughput, causing the client to select a lower
video bitrate (smaller video chunks). With smaller chunks,
TCP has less time to reach its fair share before it finishes
each chunk download, leading to further underestimation of
available bandwidth, leading to a downward spiral.

2) TCP modifications to avoid bursts: Much work has been
done to model and understand how application rate-limited
traffic affects TCP behaviour. Recently, a revised proposal on
congestion window validation (CWV) has been submitted to
IETF (RFC7661 [107]). The authors of [108] evaluated the
effects of TCP CWV and TCP pacing on DASH transport.

Ghobadi et al. [109] proposed a server-side mechanism that
uses TCP to rate-limit video traffic, which they called Trickle.
To address the problem of TCP burstiness when delivering
video which caused congested queues and packet losses, they
designed Trickle to pace the video stream by placing an
upper bound on TCP congestion window as a function of the
streaming rate and the RTT. The server computes the cwnd
bound from the observed RTT and the target streaming rate,
and uses socket option to apply to the TCP. They evaluated
Trickle on YouTube production data centres in Europe and
India and analysed its impact on packet losses, bandwidth,
RTT and video rebuffering events. The results show that
Trickle reduces the average TCP loss rates by up to 43%

7The historical default was two packets, but in recent years some operating
systems now start TCP connections with a window of ten packets.

and the average RTT by up to 28% while maintaining the
streaming rate requested by the application.

3) Multipath TCP (MPTCP): Many service providers are
capable of offering a number of independent paths, intra and
inter-domain between two nodes. Also, many end-hosts today
have multiple network interfaces (such as cellular and wireless
interfaces on mobile devices), and this may yield the possi-
bility for two endpoints to communicate via multiple paths.
These characteristics can be exploited for load-balancing and
bandwidth aggregation. There are several transport protocols
that have been developed to use multiple network paths,
such as SCTP uses multiple interfaces for redundancy/fail-
over purposes, Multipath TCP (MPTCP) [110] offers parallel
usage of multiple paths for resource pooling. Although both
protocols are designed to load balance bulk transfers, MPTCP
is gaining interest in the video streaming research community.

Very little work has been done on running DASH over
MPTCP. This is partly due to potential performance degra-
dation of multimedia content when the underlying paths are
heterogenous, as shown in some experiments [111] and also
lack of support in middleboxes [112], [113]. In a recent
work [114], Corbillion et al. exploited the interactions be-
tween the application (video) layer and transport layers for
MPTCP (undergoing active research by IETF, such as those
documented in RFC8095 [115]) to support video streaming.
Hence, they introduced a cross-layer scheduler, which lever-
ages information from both application and transport layers
to re-order the transmission of data and prioritise the most
significant part of the video. They evaluated the performance
of the cross-layer scheduler with traces aggregated from real
MPTCP sessions (on Ethernet, WiFi and cellular accesses).
They showed that the cross-layer scheduler improves the
achieved QoE (video bitrate retrieved by the client) but still has
efficiency limitations. However, the authors do not consider
the adaptive mechanisms implemented in DASH. They worked
on the basis that the ABR has already selected video chunk
representation for delivery over MPTCP.

Another recent work by Han et al. [116] filled in this
gap by proposing Multipath DASH (MP-DASH), a multipath
framework for DASH streaming with awareness of users’
network interface preferences. The basic idea is to strategically
schedule chunk delivery to satisfy user preferences, such as
preferring WiFi over cellular connection. Instead of improving
video streaming quality with MPTCP, the authors goal is to
reduce the overall streaming costs (e.g metered cellular usage).
MP-DASH is designed to work with a wide range of ABRs
and has two components: the MP-DASH scheduler and video
adapter. The scheduler is overlaid on top of the MPTCP stack.
It takes the interface preference from the user and the video
delivery deadline from the player, then intelligently decides
the best chunk downloading strategy over multiple paths while
satisfying user preference. The video adapter is an add-on that
lies between DASH ABR and MP-DASH scheduler, informing
the scheduler the chunk size and deadline of the requested
chunk. The authors integrated MP-DASH adapters into both
throughput-based and buffer-based ABRs. The authors con-
ducted experiments with these prototypes at 33 locations and
proved that MP-DASH can be effective in reducing cellular
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usage up to 99% and radio energy consumption up to 85%
when compared with using off-the-shelf MPTCP in the Linux
kernel.

Chen et al. [117] performed experimental measurements on
different applications using single-path TCP, two-path MPTCP
and four-path MPTCP. They studied the latency distribution,
video prefetch size, block size and periodic retrieval time
for Netflix and YouTube streaming using both Andriod and
iOS devices and showed MPTCP can be reasonably used
for video streaming. However, Jurca et al. [118] showed by
simulations some inherent issues and impact on QoE when
streaming over multiple paths. The authors in [119] proposed
MSPlayer, a video player that uses multiple video sources and
network paths through WiFi/LTE interfaces. This technique
is at the application layer, hence no client or server-side
kernel modifications are required. They tested the player in
an experimental testbed (with constant bitrate, not DASH)
through YouTube and showed that it reduces start-up delay
and provides high quality video and robust transport in mobile
scenarios.

In [120] Wu et al. investigated the problems of using
multi-homed terminals to stream video on mobile devices
in a hetereogenous wireless network. Although not directly
relevant to the adaptive mechanisms used in DASH streaming,
they shed light on the behaviour of mobile video over multiple
communication paths (taking the path asymmetry and data
retransmission mechanisms into account). They developed
an analytical framework for modeling MPTCP-based video
delivery and proposed ADMIT (quAlity-Driven MultIpath
TCP) which uses a utility maximisation based Forward Error
Correction (FEC) coding and rate allocation to achieve optimal
quality for real-time streaming. ADMIT uses a rate allocation
algorithm to select the appropriate access network and then
uses a FEC coding adaptation scheme to balance the end-to-
end delay and packet loss rate. Their experiment results show
that ADMIT improves video quality in terms of PSNR, and the
benefits are more obvious when the number of access networks
increases.

4) TCP Hollywood and ossified transport network: Mc-
Quistin et al. [121], [122] proposed TCP Hollywood, an un-
ordered, time-lined, TCP variant designed to support real-time
multimedia traffic. Their analysis indicates that it increases the
utility of the network in lossy conditions where the latency
requirements is constrained (VoIP, video streaming). Their
experiments show that TCP Hollywood is deployable on the
Internet, successfully operating on all major fixed and mobile
networks in the United Kingdom.

TCP Hollywood is compatible with standard TCP, but elim-
inates two sources of transport-induced latency, and provides
reliability measures that suits multimedia streaming applica-
tions. It removes Head-of-Line (HoL) blocking at the receiver
and delivers received data to the application immediately,
regardless of their order, and relaxes reliability to respect time
lines provided by the application, so only data that will arrive
in time is retransmitted, otherwise retransmissions carry new
data. Both elements reduces latency and introduces message-
oriented semantics, allow TCP Hollywood to express inter-
dependencies between transmitted packets.

Their implementation uses an intermediate logic layer be-
tween the application layer and the kernel. TCP stack is
modified to support out-of-order delivery and can be enabled
or disabled via socket options. The concept of inconsistent
retransmissions is introduced: if the RTT estimator indicates
that a packet will arrive too late to useful, or if the packet
depends on the previously unsuccessful transmitted packet,
then TCP Hollywood will exploit the retransmission slots to
send new packets instead of retransmitting useless data. TCP
preserve the sequence numbers to determine if retransmission
is required. The authors also developed an analytical frame-
work to model the retransmission value against the buffering
and processing time of the data at the receiver-side. They
showed that under a wide range of RTT values, standard TCP
retransmissions will cause packets to arrive too late to be
useful, hence they use this model to validate TCP Hollywood
and expect it to handle retransmissions correctly.

C. In-network solutions

In [123] Houdaille and Gouache proposed a traffic shaping
mechanism (bandwidth manager) that allow bandwidth arbi-
tration at the residential home gateway to address the problem
of bitrate instability and unfairness when concurrent video
streams are present. The traffic shaper intercepts the manifest
files, determines the desirable target bitrates for each stream
then constrains the clients to stay within their limits. This is
described as delivering optimal QoE for the maximum number
of users. Implementing the bandwidth manager at the home
gateway has the advantage of being able to see and control all
traffic coming into the home, and bandwidth can be allocated
according to device roles and characteristics.

The approach in [123] was validated through experimenta-
tion with Microsoft Smooth Streaming player, which captured
the stochastic nature of competing streams, high bitrate vari-
ance, unfair bandwidth sharing. They showed that their method
provides benefits in terms of stability (low bitrate switching),
bandwidth sharing accuracy and convergence speed (time
taken to reach a stable bitrate).

Mok et al. [124] proposed a QoE-aware DASH system
(QDASH) by using a bandwidth measurement proxy. They
also carried out subjective experiments under Adobe OSMF,
Apache server on Linux Debian, and concluded that users
prefer a gradual change in quality when switching up or down.

QDASH consists of two modules – QDASH-abw and
QDASH-qoe. QDASH-abw is implemented in a measurement
proxy that is placed in front of the server and it probes and
detect the highest quality level the current network conditions
can support. It manipulates the video data packets to perform
inline measurement by coupling the measurement flow with
the video data flow. It measures the available bandwidth by
using RTT estimates. On the client’s end, QDASH-qoe helps
the client to select the most suitable quality level receiving up-
dates on the measurement results measured by QDASH-abw.

Proxy caching of multimedia streams substantially reduces
the load on the network and server, reducing congestion in bot-
tlenecks and video quality. In one of the earlier works of proxy
caching for multimedia, Rejaie et al. [125] proposed a quality
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adaptive multimedia proxy cache for layered encoded streams,
called MOCHA. The proxy can adjust the quality of cached
streams based on their popularity and the available bandwidth
between the proxy and clients. Hence, MOCHA can improve
caching efficiency without compromising delivered quality.
The algorithm implements fine-grained replacement and fine-
grained pre-fetching mechanisms to adaptively increase or
decrease the quality of cached streams. Although MOCHA
is oriented towards RTSP for signalling and RTP/RTCP for
streaming, the concepts can possibly be applied to DASH.

Pu et al. [126] proposed a proxy for video adaptation be-
tween fixed and wireless networks to increase the fairness for
wireless clients. Mansy et al. [127] evaluated the performance
of DASH streaming to mobile devices with different operat-
ing systems. They observed that unfairness can result when
different device platforms are used. Siekkinen et al. [128]
demonstrated that the bursty nature of DASH streams can
be used for the benefit of power consumption in wireless
networks. Havey et al. [129] proposed a receiver-driven rate-
adaptive algorithm for wireless streaming.

D. Active Queue Management (AQM)

Evaluations are only beginning to emerge of DASH-based
streaming over recently-developed AQM schemes. As illus-
trated in Figure 5, DASH can also be affected indirectly by
the feedback signals from AQMs for regulating bottleneck
congestion and fairness. The challenge is to understand the
interactions between DASH’s bursty traffic and the small
effective bottleneck buffer emulated by AQMs.

Kua et al. [130] experimentally evaluated and charac-
terised DASH-based content delivery over PIE (Proportional
Integral controller Enhanced [131]), FQ-CoDel (FlowQueue
Controlled Delay [132]) and FQ-PIE (FlowQueue PIE [133])
AQMs in a home network environment. They found that PIE’s
higher burst tolerance and queuing delay targets benefits a
single DASH stream when there are no competing flows.
However, in the presence of bulk cross-traffic, the FlowQueue
Deficit Round Robin scheduler provides flow isolation and
fair capacity sharing, hence protecting DASH flows from
collateral damage in both upstream and downstream cases.
They also evaluated a hybrid AQM, FQ-PIE which combines
PIE individual queue management and FlowQueue scheduling
algorithm, and showed that it provides the best results when
DASH is competing with bulk TCP traffic for bottleneck
capacity.

In [134] Gongbing et al. evaluated the performance of
various traffic workloads, including DASH streams, bulk file
transfer, Voice over IP (VoIP) flow and web traffic, using ns-2
to model a variety of AQMs (FIFO, Adaptive RED, CoDel
and PIE) in a downstream DOCSIS 3.0 environment. They
found that when five DASH flows compete with a varied
number of bulk transfer flows, AQM significantly improves
DASH performance compared to traditional FIFO schemes
on the video bitrate. The results further suggest that CoDel
leads to higher DASH adaptation rates. They also observed
that PIE maintains the target queue latency more reliably than
CoDel, and concluded that differences in the burst tolerances

of PIE and CoDel contribute to observed differences in client
adaptation rate.

E. Server and network assisted DASH

Due to the heterogeneity of devices accessing content and
optimisation of QoE respectively, exchange of information
between devices can be useful. The exchanged information
can be leveraged by a video control plane enforcing network-
assisted streaming strategies. A proposal on Server And Net-
work Assisted DASH (SAND) [135] has emerged in the IETF
to support active cooperation between network elements.

This technique enables a bi-directional messaging plane
between clients and other DASH-aware Network Elements
(DANE), allowing them to trigger a control mechanism such
as flow prioritisation, bandwidth reservation and video quality
adaptation based on the network state and clients. Network
elements exchange PER (parameters for enhancing reception)
and PED (parameters for enhancing delivery) messages. Soft-
ware Define Networking (SDN) [136] is a viable technology
to implement such mechanisms due to the presence of a
centralised control element.

In [137] Kleinrouweler et al. proposed a DASH-aware
networking architecture based on SDN. Network controllers
with a broad overview on the network activity provide two
mechanisms for explicit adaptation assistance: signaling target
bitrates to DASH players and dynamic traffic control in the
network to provide dynamic QoS. The controllers (at the
control plane) ensure that the DASH players (at the data plane)
can reach sufficient download speeds via QoS mechanisms,
also assisting the players to select optimal bitrates. The authors
evaluated their prototype in a WiFi setting and showed that the
optimal video bitrate can be doubled and the number of quality
switches are greatly reduced using their method.

This approach enables ISPs and network administrators to
configure and define how bandwidth should be shared between
video and non-video traffic, and how it should be shared
among video players. Although explicit adaptation assistance
enables stable streaming and fair sharing of network resource
between DASH players, they will still under-perform when
faced with long-lived cross-traffic. In order to reduce video
oscillations in these scenarios, explicit adaptation assistance
should be combined with QoS support. DASH players then
can stream stably at a optimal quality level with or without
cross traffic.

Cofano et al. [138] investigated several network-assisted
streaming strategies (in SDN) which rely on active cooperation
between video streaming applications and the network. They
built a Video Control Plane which enforces video quality fair-
ness among concurrent video flows generated by heterogenous
client devices. A max-min fairness optimisation problem is
solved at run time. They compared two approaches to actuate
the optimal solution in an SDN network: bandwidth allocation
to video flows and video bitrate guidance. The QoE metrics
used are video quality, switching frequency and fairness. They
also investigated the impact of different client-side ABR. They
found that bitrate guidance provides the best results in terms of
video quality fairness, whereas bandwidth allocation improves
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the average video quality depending on the ABR. ELASTIC
and conventional (simple) rate-based algorithm were shown
to provide higher video quality than PANDA, but simple rate-
based ABR is affected by a large switching frequency. They
also demonstrated that video fairness is improved when per-
flow queuing is used within the network.

F. Predictive systems for server selection

Most video service providers today allow clients to switch
CDN and bitrate for load-balancing purposes [66]. Hence, a
global coordination platform or a logically centralised control
system is required to assist with such decisions.

Jiang et al. [84] proposed Critical Feature Analytics (CFA),
a scalable predictive analytics system for improving the QoE
for Internet video applications by identifying critical factors
that affect video quality. This work is built on insights from
prior work presented in [67]. The authors’ ultimate goal
is to “choose the best CDN and bitrate for a client by
accurately predicting the video quality of each hypothetical
choice of CDN and bitrate”. First they identified the key
challenges of building an accurate prediction system – the
complex relationships between video quality and features
(e.g. autonomous system number, CDN, player, geographical
region, video content) of the observed sessions, and the rapid
changes of video quality. Hence, they saw a need for a
prediction model that is expressive enough to capture these
high dimensional relationships and capable of doing near real-
time quality predictions.

CFA is driven by three key domain-specific insights –
video sessions with same feature values have similar quality;
each session has a subset of critical features that ultimately
determines its video quality; and these critical features tend to
be persistent. These characteristics enable CFA to learn critical
features for different sessions on a coarsely grained timescales
and update quality predictions in real-time.

CFA prediction consists of three stages – critical feature
learning which runs offline (every tens of minutes) and outputs
a critical feature function key-value table; quality estimation
(runs every tens of seconds) based on the critical features
learned and outputs a quality function key-value table; real-
time query and response on the arrival of each client (on
a millisecond timescale) by looking up the recently pre-
computed value function.

The authors tested CFA with a major content provider and
used it to optimise 150,000 sessions per day. Their results
show significant improvements in terms of video quality, such
as 32% less buffering time and 12% higher bitrate than a ran-
dom decision maker. They also showed that CFA outperforms
other machine learning (ML) algorithms such as Naive Bayes,
Decision Tree, k-Nearest Neighbour. In order to evaluate their
model more extensively in terms of algorithm comparisons and
number of quality metrics, they ran trace-driven simulations
and shows that CFA outperforms the baseline algorithm by
15%-52% and the best prediction algorithms by 5%-17%.

However, CFA currently makes predictions based on infor-
mation provided by the clients only. While clients generally
provide accurate information on perceived QoE, more accurate

predictions can be made if information from the servers,
caches and network paths are taken into account.

G. DASH streaming with Google SPDY, HTTP/2 and QUIC

Google’s Chrome platform and YouTube services have a
significant impact on Internet traffic [139], so it is worthwhile
considering the impact of Google’s underlying transport tech-
nologies on multimedia streaming.

Although various improvements such as persistent HTTP
connections and pipelining (at the HTTP and TCP layer)
have shown significant performance gain between HTTP/1.0
and HTTP/1.1, the HoL blocking problem together with
TCP’s streaming inflexibility still persist. Google developed
SDPY [140] (later becoming HTTP/2, in RFC7540 [141]) and
Quick UDP Internet Connections (QUIC [142], in Internet
Draft [143]) to address these problems and reduce web la-
tencies.

HTTP/2

TCP

TLS 1.2

HTTP/2 API

QUIC

UDP

IP

Fig. 7. HTTP/2 over TCP and QUIC: QUIC replaces part of HTTP/2, TLS
and runs on top of UDP

SPDY was designed to be fully compatible with HTTP
and could be integrated as a session layer between HTTP
and TCP. SDPY multiplexes multiple streams on top of a
single TCP connection per session. Network communication is
based on frames that are exchanged between client and server.
Figure 7 shows where QUIC fits, replacing part of HTTP/2 and
TLS, providing a UDP-based transport for HTTP/2 with loss
recovery and CUBIC-based congestion control [144].

A HTTP/1.1 client can only fetch one resource at a time
(even with pipelining) whereas with QUIC a client can send
multiple HTTP GET requests and receive multiple responses
over the same UDP socket. HTTP/1.1 web browsers at-
tempt to minimise the impact of HoL by opening multiple
(typically six) concurrent HTTP connections. QUIC multi-
plexing features (inherited from SPDY) enables prioritisation
among QUIC streams, traffic bundling over the same UDP
connections and HTTP headers compression over the same
connection.

In the context of DASH streaming, streaming over
HTTP/1.1 introduces a latency of at least one chunk dura-
tion, which poses a problem for live video streaming. Wei
and Swaminathan [145] developed a low latency live video
streaming technique over HTTP/2.0 to address the problem.
The authors employ a server-side method, known as the server
push feature in HTTP/2.0 to stream live content actively
from the server to the client as soon as the video chunks
become available. They implemented this feature based on low
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latency mechanism, and showed that the method improves live
streaming performance.

HTTP/2.0 specifies that the server push feature allows the
web server to push a resource directly to the client without re-
quiring the client requesting the resource. However, HTTP/2.0
is not designed for video streaming, so the authors realised
that the server push mechanism cannot be directly adopted for
video streaming unless a fully customised push strategy for
live video is designed and evaluated. They evaluated various
push strategies (No-Push, All-Push, k-Push) for live streaming.
The evaluation results show that server push enables low
latency live streaming by simply reducing the chunk size
without increasing the request overhead.

Mueller et al. [146] presented one of the first works to com-
pare DASH over HTTP/1.1 and pre-HTTP/2 (SPDY) with or
without SSL encryption. They used VLC DASH player [147]
to evaluate DASH’s performance in terms of protocol overhead
and performance over 0 to 150ms RTT. They found out that the
overhead for all both HTTP versions are small, i.e 5-7% for 2-
sec chunks and video bitrates higher than 700kbps. HTTP/1.0
achieves link utilisation equal or higher than 90% for RTT
ranging from 0-50ms, but in the case of RTTs between 100-
150ms, only 75-80% can be utilised.

Both HTTP/1.1 and SDPY perform consistently over all
RTTs due to the persistent connection and pipelining features.
Although both HTTP/1.1 and SPDY performs equally well,
SPDY offers HTTP/1.1 functionalities implicitly. Despite the
overhead introduced by SPDY framing and being not as
efficient as HTTP/1.1, SPDY and SPDY with SSL encryption
are very robust against increasing RTT because they are main-
taining only one TCP connection during the whole session.
They showed the SPDY implicitly solves the HoL problem
and achieves good results when SSL is disabled.

However, SPDY mandates the encryption, which is unnec-
essary for streaming any multimedia content that is already
Digital Rights Management (DRM) encrypted. Additional SSL
encryption introduces additional computational overhead on
both server and client.

Carlucci et al. [148] evaluated QUIC in terms of Web
traffic and assessed the performance of QUIC compared to
SPDY and HTTP/1.1. Preliminary experiment results and
analysis on video streaming over QUIC are presented in
bitmovin’s reports [149], [150]. In the experiments, Timmerer
et al. compared the performance of DASH streams when
using HTTP/1.1/2.0/SPDY over TCP/QUIC using a controlled
testbed. QUIC comes with a slightly higher protocol overhead
than TCP but is below 10% except for very low bitrates
(≤100kbps). The link utilization decreases with increasing
RTT but is always > 87% of the available bandwidth and
remains stable for different bandwidths.

Bottleneck Bandwidth and RTT (BBR) [151] is an emerging
congestion-based transport protocol. BBR aims to maximise
the network throughput with minimal queue by probing the
bandwidth and RTT sequentially. BBR is now fully deployed
for all TCP services on Google Wide Area Network (WAN)
backbone, and has replaced TCP CUBIC on Google and
YouTube services. BBR is now available as part of the Linux
source tree in kernel version 4.9 and its implementation for

QUIC and FreeBSD is currently under development. There
are no documented experimental results on BBR’s impact on
adaptive video streams to date.

VI. TRAFFIC MEASUREMENTS AND CHARACTERISATION

Several measurement studies have been conducted over
the years to characterise traffic patterns and understand the
technologies used by popular commercial streaming services
(since most companies own proprietary technologies that are
not revealed publicly). These studies attempt to understand
DASH’s adaptive behaviour “in the wild”. In this section we
discuss some of the key works carried out in measuring and
characterising video traffic delivered with DASH technologies.

A. Characterising traffic patterns

To design and evaluate different rate adaptation schemes, it
is necessary to understand the nature of the traffic the scheme
has to deal with. The studies discussed in this section explore
video traffic on long and short time scales. On long time
scales, the patterns of popularity (the distribution of videos
chosen) has attracted the most attention while on the short
time scales the pattern of delivery during a streaming session
has attracted most attention. These studies suggest that video
popularity across large datasets appear to conform well to
Zipf’s law but for some smaller populations, such as a single
University campus, there can be little correlation between what
is globally popular and what is locally popular. Also, many
videos were selected only once during the data collection
period. On shorter time scales, there have been a number
of strategies observed as to how video is delivered during a
session. The dominant factor in strategy selection appears to
be the client software.

In [152] Rao et al. did an in-depth analysis on the network
characteristics of Netflix and YouTube traffic and showed that
streaming strategies vary with the type of application (e.g. Web
or mobile app) and container (e.g. Silverlight, Flash, HTML5).
They identified three different strategies – no ON-OFF cycles,
short ON-OFF cycles and long ON-OFF cycles, were used to
stream commercial video and discussed how they impact the
network. They used the amount of data transferred during the
buffer prefilling phase, block size (amount of data transferred
in one ON-OFF cycle) and accumulation ratio (ratio between
the average download rate and the video bitrate during the ON-
OFF steady-state phase) as their metrics for traffic characteri-
sation. The authors observed that there are no ON-OFF cycles
when Firefox is used to stream HTML5 videos, essentially
resulting in a long-lived TCP flow. In addition, they observed
that YouTube servers control the data transfer rate when any
application uses Flash, resulting in short ON-OFF cycles, but
do not explicitly rate limit when streaming HTML5 videos.
Each application uses its own strategy to stream HTML5
videos. When streaming Netflix videos, web browsers and
iOS devices use short ON-OFF cycles and Android devices
use long ON-OFF cycles. In most cases, YouTube sends 40
seconds worth of video data during the buffer prefilling phase
and serves 64 kB blocks during the steady state phase for Flash
videos, resulting in short ON-OFF cycles. For HTML5 videos,
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Chrome and Android devices are observed to be downloading
larger video blocks ( >2.5 MB), with OFF periods in the order
of 60 seconds, resulting in longer ON-OFF cycles.

The authors complemented their results by presenting an
analytical model that evaluates the potential impact of these
strategies on the aggregate traffic by considering video stream-
ing parameters (e.g. video arrival rate, number of videos,
encoding rate, video duration, buffering amount, accumulation
ratio). This mathematical model provides insights for traffic
engineering, for example, the potential impact of migrating
from Flash to HTML5 containers.

Gill et al. [153] collected traces of 25 million transactions
between an edge network (campus network) and YouTube,
including 600,000 YouTube downloads over a three month
period. They analysed and characterised YouTube traffic in
the light of Web 2.0 (sites with user-generated content where
users can upload content and view content posted by peers)
from a local and global perspective. Locally, they consider the
viewing habits of YouTube users on campus. Globally, they
considered video popularity and examined their relationship
with popular videos viewed on campus. They characterised
YouTube video files in terms of file sizes, video durations,
bitrates, age, ratings and categories. They subsequently exam-
ined the usage patterns, file properties, popularity, referencing
characteristics, transfer behaviours and compared them to
other traditional Web workloads. They observed that local
viewing habits are well described by Zipf’s law and concluded
that video workloads are similar to Web workloads in terms of
access patterns (closely correlated to human behaviours, e.g.
traffic volumes are higher during a certain time, certain day of
the week). The authors discussed the implications of Web 2.0
for network and service providers, and recommended the use
of distributed CDNs and caches by leveraging the availability
of metadata to reduce bandwidth consumption and core server
workload.

Comparably, Zink et al. [154] did a similar study on the
correlation between video bitrates, durations, global or local
content popularity, and access patterns of YouTube videos
by measuring streaming traffic in a campus network. They
proposed a framework for monitoring YouTube signaling and
data traffic by correlating TCP/IP and HTTP headers and
packets exchanged at the campus gateway. They observed
that there is no strong correlation between global and local
popularity. They used data-driven simulations to demonstrate
the advantages of using client-based local caching, P2P-based
distribution and proxy caching in reducing video start-up times
and reducing bandwidth consumption.

Similarly, Cha et al. [155] did an extensive data-driven
analysis of YouTube and Daum (a popular streaming service in
Korea). The authors studied the popularity life-cycle of videos
(and what shapes the popularity distribution), the intrinsic
statistical properties of requests and their relationship with
video age, content duplication, the level of content aliasing
or illegal content in the system. They applied Pareto and long
tail analysis to identify the key elements that influence the
popularity distribution. The authors concluded with insights
into utilising peer-assisted techniques and caching to enhance
user experience, which can potentially offload server traffic by

up to 50%.
In [156] Finamore et al. compared the traffic patterns

generated by mobile devices (smartphones, tablets) and PCs
(desktops, laptops). They also investigated the users’ behaviour
and correlate it with the system performance. The authors per-
formed these measurements by using unique datasets collected
from various vantage points in nation-wide ISPs and university
campuses in Europe and the United States. They discovered
that user access patterns are broadly similar across a wide
range of user locations, access technologies and user devices,
with most users using default player configurations.They de-
duced that YouTube is highly optimised for PC users and less
efficient when serving mobile devices. Together with limita-
tions of mobile devices, YouTube serving strategies for these
devices (more aggressive buffering) cause higher access time,
lower download rate and more bursty traffic. Furthermore,
they also discovered that 60% of the videos are watched for
no more than 20% of their duration, resulting in waste of
transferred data, which can impact mobile users more (due
to limited storage and more expensive data usage), hence they
proposed a more precise control of buffering in mobile devices
with the use of efficient CDN caching schemes.

Most popularity predictive models focus on highly popular
content – models that attempt to predict what content might
be accessed next are, of necessity, based only on the most
popular videos. Carlsson and Eager [157] took an orthogonal
approach in analysing the implications of ephemeral content
on content caching at edge networks. Their work is motivated
by the fact that a large fraction of content is ephemeral
(or “one-timers” – videos that are only requested once from
the edge network), which means indiscriminate caching of
all content at edge networks can lead to high inefficiency
and costs. They performed an in-depth analysis on YouTube
request characteristics observed at an edge network over a 20-
month period. They observed that 71% of the videos are one-
timers (requested only once in the 20-month period), hence
demonstrating the need for selective caching policies. The
authors then proposed a workload model for content delivery
applications with ephemeral content. It models the distribution
of total number of times that a content will be requested
based on interests. The output is the used to analyse the trade-
offs between cache insertion rate (content items inserted into
the cache) and cache miss rate (requested content items that
are not available in the cache). Subsequently, they applied
their model to compare the performance of two edge caching
policies – indiscriminate caching and cache on kthrequest for
different values of k. They find that caching based on the
number of requests k can reduce cache insertions effectively.
They also explored the possible benefits in terms of cache
improvements based on other popularity prediction methods,
such as the “oracle” policy.

B. Understanding commercial technologies

1) Reverse-engineering: Some studies have focused on
understanding the operation of popular commercial streaming
services by reverse-engineering the video streaming network
architecture as a whole.
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In [158] Adhikari et al. performed both active and passive
measurements of Netflix to uncover its architecture and service
strategy. They measured the available CDN bandwidth and
investigated its behaviour at different geographical locations,
and found that Netflix employs a blend of data centres and
CDNs for content distribution. They also performed active
measurements of the three Netflix CDNs to quantify the avail-
ability of video bandwidth. They proposed a measurement-
based adaptive CDN selection strategy and a multiple-CDN-
based video delivery strategy, and demonstrate their potential
in increasing users’ average bandwidth.

In [159] the authors deduced the key design features behind
YouTube’s content delivery system by using a distributed ac-
tive measurement infrastructure (using multiple vantage points
from PlanetLab nodes), analysing large volume of video play-
back logs, DNS mappings and latency data. They revealed the
multiple DNS namespaces (reflecting a multi-layered logical
organisation of video servers), a three-tier physical caching
hierarchy, sophisticated mechanisms for handling cache misses
(backend fetching) and load-balancing. In [160], Torres et
al. used passively collected data to dissect server selection
strategies for the same service and attempt to understand its
load-balancing/multi-homing strategies.

The authors of [161], [162] studied the overall architec-
ture of Hulu with active measurements. They focused on
understanding Hulu’s server selection strategies how resources
are allocated to serve user requests, focusing primarily from
the content provider perspective. They found out that Hulu
CDN selection is done on control servers and communicated
to clients through manifest files. Preferred CDNs are then
assigned based on pre-determined probabilities, independent
of location, video, time and instantaneous available band-
width. All servers employ locality-based DNS resolution and
customers from different services may share the same set
of servers. Hulu frequently changes preferred CDNs and
stay with the same CDN once the video is played (despite
degradation of performance). They also observed that Hulu
divides video requests among CDNs to attain a fixed target
ratio. [163] presented the potential benefits of caching in
Hulu’s CDN. Netflix uses the same three CDNs that Hulu
uses but assigns CDNs to user accounts statically. They also
noted that Netflix uses DASH-like streaming whereas Hulu
uses Real-Time Messaging Protocol (RTMP).

In [164] the authors presented an extensive trace-driven
analysis of traffic exchanged between YouTube data centers
and end-users, from the perspective of a large tier-1 ISP.
They inferred the load balancing schemes and routing policies
used to serve users’ requests, and analysed their impact on
traffic dynamics across YouTube and the ISP. They discovered
that YouTube employs a location-agnostic, proportional load-
balancing strategy among its data centres. They also proposed
a novel method to estimate the unseen traffic (traffic carried
outside of the ISP network). Their work help sheds light on
the interplay between large content providers and ISPs.

2) Measuring from the client: Other studies focused on
understanding the behaviour closer to the client-end.

In [87] Huang et al. measured how Hulu, Netflix and
Vudu clients select video bitrates with the client-side band-

width estimation. In all three services, the authors showed
that inaccurate bandwidth estimates (especially in the face
of competing bulk file download) can trigger a feedback
loop that detrimentally lead to a variable and low-quality
video, which they termed the ‘downward spiral’ effect. The
authors identified the root cause of the failure is the lack
of information exchanged between TCP and HTTP. Hence,
they proposed to design a client that enables TCP to reach
a steady state fair share before reducing the video quality. A
more radical solution is to eliminate the use of throughput
estimates altogether, leaving rate control to TCP for attaining
a fair share of bandwidth, and use buffer-occupancy to drive
the video bitrate selection, resulting in the buffer-based rate
adaptation algorithm presented in Section IV-B.

Liu et al. [165] did a comparative study between Android
and iOS (on mobile devices) for accessing streaming services,
using both server-side log analysis and client-side experiments.
Android and iOS media players ares shown to use different
content requesting approaches and different buffer manage-
ment methods, resulting in different amounts of received data.
iOS devices send out more HTTP requests than Android
devices, and always use HTTP range requests, as opposed to
the standard HTTP requests used by Android devices.

In [166] Akhshabi et al. experimentally evaluated the per-
formance of Microsoft Smooth Streaming, Netflix and Adobe
OSMF players in the scenarios with different variations of
available bandwidths (unrestricted, persistent or short-term
variations). They sought to understand how players react to
persistent or short-term bandwidth variations, how quickly can
a player converge to a sustainable bitrate, can two players
share the available resources fairly and stably, and how does
the player perform when streaming live content in terms of
startup delay. They discovered that Smooth Streaming player
is effective under unrestricted bandwidth as well as under
persistent available bandwidth variations. It converges to the
highest sustainable quickly but rather conservative in bitrate
switching decisions. However, it reacts to short-term band-
width availability too late, causing sudden drops in playout
buffer and unnecessary bitrate reductions. Two competing
Smooth Streaming players show that the logic is unable to
avoid oscillations, and does not aim to reduce unfairness in
bandwidth sharing. The Netflix player used in [166] also
uses Smooth Streaming, hence their behaviours are similar.
However, Netflix uses a much larger playout buffer and is
more aggressive in providing the highest bitrates, even at the
expense of additional bitrate changes. The OSMF player is
unable to converge to an appropriate bitrate even after the
available bandwidth has stabilised.

VII. CONCLUSIONS AND FUTURE WORK

Due to its scalability and feasibility, DASH has emerged
as a compelling standard for on-demand and live multimedia
streaming over the Internet. The core essence of DASH is
its ABR algorithms that enable the selection of appropriate
video bitrates to match the dynamically changing network
conditions. The DASH specifications provide flexibility for
researchers and developers to explore and implement various



1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2017.2685630, IEEE
Communications Surveys & Tutorials

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL.XX, NO.X, MONTH 201X 20

ABRs. Since network conditions are best known at the client-
end, most ABRs focused on client-end heuristics. However,
there are also other techniques that utilise server-end algo-
rithms and network-level solutions to assist with clients’ rate
adaptation.

In this paper, we have surveyed key rate adaptation tech-
niques and classified them in terms of the feedback sig-
nals used for video bitrate selection. Throughput-based ABR
predicts the future network condition based on past chunk
download rates. Pure buffer based algorithms use past and
present buffer occupancy to determine the network state and
choose a video bitrate that matches the network capacity. Most
algorithms implemented are hybrid, combining both through-
put and buffer as feedback signals for more accurate estimates.
Control-theory based algorithms present the bitrate selection
process and various QoE metrics as a stochastic optimal
problem. It then attempt to solve the problem and drives the
bitrate selection with a network bandwidth prediction horizon.
Server-side transport and network layer modifications can also
prove to be effective. Network-level solutions are proposed
recently and will be feasible with the rapid developments in
SDN and modern AQMs.

Throughput-based algorithms were thought to be sufficient
for a smooth video viewing experience, but it turns out that
sudden network fluctuations can be hard to predict. As user
expectations increases, these algorithms start to take increas-
ingly complex QoE metrics into account, using mathematical
models to predict network characteristics and users’ viewing
behaviours. Pure buffer-based approaches are orthogonal, but
do not account for user-defined QoE objectives. Hybrid client-
side ABRs which combine both throughput and buffer-based
signals, and subsequently apply them in a control theory
framework, prove to be the most holistic approach. These
algorithms smooth out throughput prediction errors and are
able to maximise users’ QoE preferences. A drawback of
control-theory based ABR is that it can be computationally
intensive. Although server and network-level solutions provide
noteworthy benefits, they are significantly more complex and
are less likely to be immediately deployable.

We have also covered some key traffic measurements
and characterisation studies of notable commercial streaming
companies. Since most companies own proprietary streaming
technologies, these studies attempt to uncover the adaptive
techniques used and the traffic patterns, behaviour and impact
of DASH in the real world. Other studies attempt to understand
the characteristics of DASH traffic when competing with
various cross-traffic.

There remain several open research challenges and issues
such as the following:
• Understanding the interactions between various classes

of ABR algorithms and the different underlying TCP
algorithms. For instance, experimentally analysing and
characterising the impact of alternative transport proto-
cols such as MPTCP, Google QUIC or BBR on DASH-
based content delivery will be of great interest to the
streaming community.

• Coupling of application and transport layer at the client-
end so that DASH clients are aware of the underlying

path’s latency using transport layer RTT estimates.
• Design of client-side ABR algorithms that interacts opti-

mally with modern bottleneck AQMs.
• Strategic placement of CDN servers and proxies.
• Server-side bandwidth management, resourcve allocation

and pacing TCP packets to smooth out traffic burstiness.
• Fair resource sharing for DASH streams and other cross-

traffic when multiple clients share a bottleneck.

The content streaming community has some interesting
challenges ahead.
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