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Abstract—Congestion Control (CC) has a significant influence
on the performance of Transmission Control Protocol (TCP)
connections. Over the last three decades, many researchers have
extensively studied and proposed a multitude of enhancements
to standard TCP CC. However, this topic still inspires both
academic and industrial research communities due to the change
in Internet application requirements and the evolution of Internet
technologies. The standard TCP CC infers network congestion
based on packet loss events which leads to long queuing delay
when bottleneck buffer size is large. A promising solution to
this problem is to use the delay signal (RTT or one-way delay
measurements) to infer congestion earlier and react to the
congestion before the queuing delay reaches a high value. In this
survey paper, we describe the delay signal and the algorithms that
completely or partially utilise this type of signal. Additionally, we
illustrate standard CC and modern Active Queue Management
(AQM) principles and discus the interaction between AQM and
the delay signal.

Index Terms—TCP, Delay-based congestion control, Active
Queue Management

I. INTRODUCTION

T ransmission Control Protocol (TCP) [1] deserves a great
tribute for the success of the internet in the last three

decades because of its ability to generally perform sufficiently
well in spite of the significant changes in internet technologies.
TCP is a transport protocol that provides byte-streams and
reliable data transfer over the packet-based best-effort Internet
Protocol (IP) layer [2]. As the preferred transport for many
internet applications, TCP has earned a lot of attention from
the research community keen to maximise the protocol’s
performance. Congestion Control (CC) is a critical part of
TCP that directly influences the protocol’s performance. CC
aims to manage network resources in an efficient manner and
to provide resource sharing among competing flows while
protecting the network from collapse.

Typically, TCP CC probes a path’s capacity by sending data
and monitoring the incoming implicit (or sometimes explicit)
feedback signal. Based on the feedback signal, TCP reduces
or raises the number of unacknowledged bytes in flight to
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minimise congestion while achieving high link utilisation.
Implicit feedback can be inferred from packet loss caused
by bottleneck’s buffer overflow (loss-based CC) or variations
in packet delivery delay caused by bottleneck queue building
up (delay-based CC). Additionally, TCP CC can benefit from
explicit feedback, such as Explicit Congestion Notification
(ECN) [3], where end hosts and bottlenecks both support such
a feature.

The most common, actively used TCP implementations
utilise reliable and easy to implement loss-based CC algo-
rithms. However, flows using loss-based CC become prob-
lematic when they compete with latency-sensitive flows for
capacity at bottlenecks having large buffers. In such case, loss-
based TCP pushes the bottleneck queue to a high threshold
until buffer overflow occurs causing long queuing delay. The
resulting additional latency can negatively impact latency-
sensitive applications (such as live video streaming and online
gaming) and degrade network quality of service in general.
Using packet loss as a signal also wastes network resources
(due to the need for retransmitting the lost packet).

Consequently, many researchers have explored the use of
delay as a feedback signal (partially or fully) to remedy the
shortcomings of loss as a signal. Delay-based CC approaches
provide low latency data transfer through controlling network
congestion as soon as bottleneck queues start building up.
Using a such strategy, they prevent packet losses which can
significantly affect unreliable UDP streams such as VoIP
traffic. Additionally, many delay-based CC algorithms aim to
achieve high and stable throughput by reducing oscillation in
data sending. Oscillation in packet sending reduces the perfor-
mance of transport protocol in long-distance high-speed paths
with shallow bottlenecks buffers. Delay-based CC approaches
can be optimised to be used efficiently in high-speed long-
distance networks to converge to full link utilisation quickly
without stressing the network. Moreover, it has been shown in
many industrial and academic works that delay-based CC can
be efficiently used in background bulk data transfer transports
and scavenger class services such as system updates [4], [5],
[6], [7], [8], [9]. It is also possible to utilise the delay signal for
distinguishing between congestion related and random losses
[10], [11]. This is useful to achieve high link utilisation in
lossy networks.

Unfortunately, delay-based feedback is complicated and
fraught with difficulties including noise in the signal, sampling
problems, coexistence and many other issues that this paper
covers. This prevents delay-based CCs from being widely used
for general purpose control congestion.

Developing good CC strategies is a complicated task, as it
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requires intelligent awareness of network resources availability
and using these resources in an efficient and fair manner. At
the same time finding an effective solution is highly desired for
many applications and users. Many improvements to standard
TCP CC have been suggested, but no technique is perfect yet
in all situations.

Much work has been done to study different congestion
control schemes. Hasegawa and Murata [12] study the fairness
issues in TCP CC and the available solution that can improve
the fairness. Afanasyev et al. [13] study different host-to-host
congestion control techniques classified based on the goals
such as improving protocol performance in networks with high
packet reordering, wireless networks or high-speed and long-
distance networks. Ros and Welzl [14] focus on low priority
end-to-end CC techniques used for background data transfer.
Lochert et al. [15] review congestion control techniques for
mobile ad-hoc networks. Callegari1 et al. [16] study thirteen
different TCP CC variants implemented in the Linux Kernel
2.6.x.

Unlike previous work, we present a survey of congestion
control techniques that utilise delay signal as a primary or sec-
ondary indicator to control network congestion. We describe
general principles of TCP CC and congestion signal types, and
explore the challenges of using delay signal and how some
recently popularised queuing-delay based Active Queue Man-
agement (AQM) techniques are likely to interact with delay-
based CC techniques. Since there are many proposed TCP CC
utilising the delay signal, this paper covers popular techniques
that have real impact on their working environments.

The rest of this paper is structured as follow. Section
II provides principles of TCP flow control and congestion
control. Section III describe the interaction between TCP and
the bottleneck FIFO buffer and introduces AQM functionality.
Section IV is devoted to TCP congestion control literature
including the delay and loss congestion feedback signals
and standard TCP CC algorithms. Section V is dedicated
to reviewing popular delay-based, hybrid and delay-sensitive
TCP variants. Section VI discusses the challenges faced with
using the delay signal including deploying AQM. We conclude
the paper with Section VII.

II. TRANSMISSION CONTROL PROTOCOL – AN OVERVIEW

The TCP layer provides a reliable, connection-oriented end-
to-end transport protocol that guarantees error-free, in order
delivery of data to the destination [1]. TCP flow control and
congestion control limit the amount of outstanding (unac-
knowledged) sent data. Flow control prevents fast senders
from overrunning the buffers of slow receivers (which causes
packet loss). Congestion control aims to prevent senders from
sending too much data that can overflow buffers within the
network (network congestion). In this section, we summarise
the principles of TCP flow control, TCP congestion control
and how the injection of packets into the network can be
controlled.

A. TCP Reliability and Flow Control
The IP layer [2] provides a best-effort packet transfer service

between the source to destination host. IP does not guaran-

tee delivery, nor ensure packets are delivered in-order. TCP
is responsible for both data integrity and network resource
management to provide a reliable end-to-end connection.

Data transfer over TCP is initiated by an application which
supplies data to the TCP stack. TCP buffers the data, allocating
each byte a sequence number. TCP then partitions the buffered
data into segments, assigning each segment the sequence
number of the first byte in that segment. Using a sliding
window mechanism (shown in Figure 1), TCP transmits a
number of segments to the receiver over the IP protocol.

Sent and 
acknowledged

Sent but not 
acknowledged

Segments waiting 
for transmission

Sending window

Current sender output bufferRemoved from buffer

Fig. 1. TCP sliding window mechanism

At the receiver, the destination host buffers the segments in
its TCP receive buffer. If a segment arrives without error and in
order (checked using the sequence number), the receiver con-
firms receiving the segment by generating and sending back
an acknowledgement packet (ACK)1 containing the sequence
number of next byte it is expecting to receive.

The ACK packet confirms the delivery of all bytes that have
sequence numbers smaller than the ACK number. As such, it
is not required to send an ACK packet for each data packet.
When an ACK packet is received by the source, the sender
moves the sending window (swnd) by the amount of acknowl-
edged data and sends new segments if they are ready in the
sending buffer. In other words, the sender should not transmit
more data than swnd allows until receiving acknowledgement
of previously sent data i.e. seqnext < sequna + swnd where
seqnext is the sequence number of next packet to be sent, and
sequna is the sequence number of the first packet sent but
not yet acknowledged. As such, swnd effectively limits the
number of unacknowledged bytes (bytes in-flight).

Using this mechanism, there is a period of time before
the sender is aware if a segment arrived at the destination
correctly. The earliest the sender can receive an ACK is given
by the round trip time (RTT) – the combination of serialisation
delays (transmission time), propagation delays, and bottleneck
queuing delays along both the forward and reverse paths. In
reality each ACK may be further delayed by additional factors
such as the processing power of the end hosts and middleboxes
along the path, and efficiency improvement mechanises (e.g.
delayed ACK).

We can conceptualise the link between the source and
destination as a virtual pipe between the two points (see
Figure 2). The bandwidth (link capacity) is represented by
the diameter of the pipe, while the delay (path RTT) is

1A normal TCP packet with the ACK flag in TCP header set.
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represented by the length. The product of these two values, the
bandwidth-delay product (BDP), represents the pipe’s volume
– the amount of data that saturates the link between the sender
and receiver.

Sender
ReceiverB/W

= Data pkt
= ACK pkt

Round‐trip Time (RTT)

Forward path delay

Reverse path delay

Fig. 2. Bandwidth-Delay Product and link pipe

If the sender fills the pipe completely, data transmission
will be continuous because acknowledgements will be received
while data is still being sent. On the other hand, if the pipe is
partially filled, there will be stalls during transmission because
the sender has to wait for acknowledgements to trigger sending
new data as shown in Figure 3. In order to achieve optimum
throughput, the sender should keep swnd greater than or equal
to the link BDP.

= Data pkt
= ACK pkt

Sender
Receiver

Round‐trip Time (RTT)

Fig. 3. Unfilled link pipe causing low link utilisation

The destination TCP receive buffer size is subject to mem-
ory availability, system/application configuration and process-
ing power. Therefore, the sender should be aware of the
receiver buffer availability. As part of TCP flow control, the
receiver specifies the maximum number of bytes it is willing
to receive via the advertised receive window size (rwnd). This
mechanism prevents a fast sender from exhausting the limited
buffer size in a slow receiver.

B. TCP Congestion Control

The original TCP specification limits outstanding (unac-
knowledged) packets only by the receiver’s rwnd [1]. However,
this completely ignores network congestion.

Without awareness of the current network congestion state,
TCP may send more data than a bottleneck can handle,
resulting in heavy packet loss, significant reduction in network
performance, increase in packet delivery delay, and could lead
to a phenomenon called congestion collapse. This is a scenario
where only a small portion of transmitted data is successfully

delivered and acknowledged, leading to low goodput2 and long
queuing delays.

Congestion collapse in the Internet was first observed in the
mid 1980s [17], due to TCP senders spuriously retransmitting
packets that were actually not missing but waiting in long
queues. The retransmissions exhausted bottleneck capacity
more seriously as the number of flows increases.

An early solution to mitigate the congestion problem relied
on an explicit message sent using Internet Control Message
Protocol (ICMP) [18]. An ICMP Source Quench [1] message
would be sent by the congested router to the sender when
the bottleneck buffer becoming congested, causing the sender
to throttle back. However, use of ICMP Source Quench was
deprecated due to ineffectiveness and unfairness issues [19].

The fundamental solution has been the development and use
of end-to-end congestion control (CC). CC algorithms aim to
monitor the network’s current congestion state, and to use this
information to adjust the sending rate, directly or indirectly,
to stabilise network usage, maintain high link utilisation and
provide a fair share of the available bandwidth [20].

TCP CC [21] maintains a congestion window size (cwnd)
for each TCP flow, representing the maximum number of bytes
the sender may send and have outstanding (unacknowledged)
based on current network congestion state. The sender selects
the minimum of rwnd and cwnd as the final sending window
size swnd = min(rwnd, cwnd).

TCP CC attempts to fully utilise the network without caus-
ing congestion by inferring current network conditions and
dynamically adjusting cwnd accordingly. It reacts to changing
network conditions by increasing cwnd when no congestion is
detected and reducing it when a congestion event occurs.

At the start of new TCP connection, the sender is unaware
of available network bandwidth. TCP uses a phase called
slow-start (see Section IV-C1) to quickly probe the available
bandwidth in the path. During slow-start, the sender increases
cwnd on each ACK received. When congestion is detected,
TCP CC sets cwnd as a portion of the achieved window size
when the congestion was detected, and exits slow-start to enter
another phase called congestion avoidance.

During congestion avoidance, cwnd increases more slowly
than in slow-start, typically by one segment per RTT, to avoid
causing congestion while still adapting the window size to any
changes in available capacity. A detailed discussion on TCP
CC algorithms is available in Section IV-C.

Controlling congestion efficiently is not an easy task due to
the distributed nature of the TCP/IP protocol and constantly
changing network conditions. Not all CC algorithms have the
same goals nor are expected to function in all environments.
Some algorithms may prioritise minimising delays, while
others may focus on performing well under special conditions
such as within a data centre. Nevertheless, listed below are
some common goals shared by most CC algorithms [17].

• Preventing congestion collapse: Considered the main rea-
son for the existence of CC.

2Goodput is the amount of data that arrives to the destination successfully
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• High bandwidth utilisation: Considered a fundamental
requirement for all CC algorithms. CC should avoid path
capacity underutilisation to maximise throughput.

• Fairness: CC should guarantee an acceptable equal share
of the available bandwidth among all competing flows
sharing the same bottleneck.

• Fast convergence to fairness: When a new TCP flow
joins a shared bottleneck, the CC should react rapidly
to this event by increasing the cwnd of the new flow and
reducing it for all other flows until fairness is achieved.

• TCP-Friendly: For deployment purposes, CC algorithms
intended to be used in an uncontrolled network, e.g.
the Internet, should coexist with other CC algorithms by
maintaining fairness.

Due to differences in CC algorithms, factors such as path
RTT and flow starting sequence may affect fairness, giving
advantages to some flows over others. For example, TCP Reno
[21] flows transmitted over a high RTT path get lower overall
throughput than flows using shorter RTT paths. This is due
to the Reno algorithm increasing cwnd by one Maximum
Segment Size (MSS) every RTT. As a result, cwnd increases
faster for flows using shorter paths.

TCP CC protocol variations should manage cwnd such that
it does not reduce their – or other standard CC protocols –
performance significantly. A well-known example of incom-
patibility with standard CC is TCP Vegas [22] which realises
low throughput when competing with loss-based CC in a large
bottleneck buffer environment [23].

Some CC algorithms have been designed to work in a con-
trolled environment, such as data centres, where all machines
use the same algorithm. For these protocols, compatibility with
other widely used algorithms is not a concern.

There are arguments about the ideology of flow fairness
in TCP CC and how the fairness concerns benefits for users
but not for individual flows in real world [24]. However, flow
fairness is still considered important for many CC algorithms
studied in academia. As such, CC algorithms typically take
flow fairness into consideration, trying to distribute available
bandwidth amongst competitive flows fairly.

Alternatively, Low Priority Congestion Control (LPCC)
algorithms specifically aim to achieve lower capacity sharing
of the available bandwidth and/or lower queuing delay when
coexisting with other flows [14]. This group of algorithms
(also called scavenger class or less than best effort service)
are used by background applications such as bulk file transfer,
peer-to-peer applications and automatic software updates. In
these cases, the algorithms try to reduce the impact on higher
priority foreground applications, while attempting to maintain
fairness when coexisting with flows from the same class.

The original TCP specifications [1] do not specify a direct
mechanism for the hosts to learn about network congestion
state. As a result, TCP CC utilises indirect information to
determine whether the path is congested or not, or the degree
of congestion in the path. This indirect information gathered
from measurements taken during packet exchange between
hosts, and typically varies due to buffering effects that may
occur at any point in the network path.

During the last three decades, many congestion control
algorithms have been proposed to calculate an optimum cwnd.
However, only a few have been standardised including TCP
Reno [21], TCP NewReno [25] and TCP SACK[26]. We
denote these CC algorithms as standard TCP in this paper.

C. Controlling the injection of packets into the network

Most TCP implementations utilise window-based CC strate-
gies to limit the number of injected packets in the network.
Although this mechanism is efficient, easy to implement and
does not require timers, it can generate periodic packet bursts
into the network. This can lead to delay fluctuations, increased
packet losses, higher queuing delays, and lower throughput
[27]. These bursts occur because the transmitter immediately
sends new packets (as many as swnd allows) whenever an ac-
knowledgement is received. If acknowledgements are delayed
or compressed for any reason (e.g. congestion in the reverse
path), the sender will receive multiple acknowledgements in a
short period, freeing a space in the window and causing the
sender to transmit multiple packets in a burst.

An alternative approach to control the number of transmitted
packets in the network is to limit the actual sending rate
directly. Rate-based CC can calculate the required sending rate
that would fully utilise available bandwidth without causing
congestion. The calculated sending rate is then used to sched-
ule regular transmission of packets, removing the burstiness
seen with the sliding window. Other types of rate-based CC
can estimate the required sending rate in a similar way to
window-based CC, i.e. increase the sending rate when no
congestion is detected and reduce it when congestion happens
to achieve acceptable fairness when competing with window-
based flows.

In rate-based strategy, the required sending rate can be
realised either inside TCP stack or externally (e.g. packet
schedulers) using packet pacing. Packet pacing allows a chunk
of packets to be spread across a time slot by adding gaps
between the sending of packets. The duration of these gaps is
determined by the required sending rate.

Packet pacing is also used with window-based mechanisms
to eliminate packet bursts [28]. In this case, the transmission
of a window’s worth of packet is spread across a full RTT.

Packet pacing provides smoother traffic flows and more
stable demands on the network and can improve the stability
of TCP by minimising variations in queue utilisation. Ad-
ditionally, it has been shown that packet pacing provides a
positive impact on delay-based CC by providing smooth RTT
measurements [29].

Despite their benefits relative to window-based strategies,
implementation of rate-based strategies is often more complex
and requires accurate timers which is considered a costly
requirement for embedded and low-end devices.

III. BUFFERING AND QUEUE MANAGEMENT

Network buffers are used to absorb packet bursts, reduce
packet losses, and improve overall network performance. They
exist in many places of the packet transmission path including
the host application, TCP socket, host network layer, network
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interface cards (NIC), network switches, routers, proxies and
firewalls.

Buffers are used to temporarily queue packets when the
next layer is busy or unable to process the packet as fast as
they are provided. There may be a number of causes, such
as devices with low processing power, network scheduling
priority, temporary reductions in link layer sending rate, and
transient network congestion.

A. Traditional Buffering and Queues

The most common method for implementing network
buffers is First-In First-Out (FIFO) with a DropTail manage-
ment mechanism. In a FIFO queue, packets are appended
to the tail of the queue during the enqueue process and
fetched and removed from the head of the queue during the
dequeue process. When the queue size exceeds the buffer size,
the DropTail mechanism drops any new packet until suitable
buffer space becomes available. Figure 4 shows a conceptual
representation of FIFO and DropTail mechanism.

Output packetsInput packets
Buffer Size

FIFO
HeadTail

Fig. 4. FIFO and DropTail buffer management

When TCP was first designed, the bit error rate of transmis-
sion channel (usually wired) was very low. Therefore, packet
loss was mainly caused by buffer overflow, and taken as an
indication of congestion at the bottleneck. This relationship
between packet loss and network congestion is exploited by
loss-based TCP CC to infer congestion along the path.

The proliferation of oversized FIFO buffers in the network,
coupled with the aggressiveness of loss-based TCP CC, causes
high queuing delay in a phenomenon called Bufferbloat [30].
This high delay has a negative impact on latency-sensitive
applications in particular, and on network performance in
general.

Active Queue Management (AQM) is a mechanism used to
keep the bottleneck queues of network nodes to a controlled
depth, effectively creating short queues [31]. AQM is used as a
replacement for the DropTail mechanism. When AQM detects
congestion it reacts by dropping or marking packets with an
ECN [3]. The loss event or ECN signal is then detected by
the sender which reduces the transmission rate by decreasing
cwnd.

B. Active Queue Management

In the last two decades, many AQM algorithms have been
proposed to manage the queuing delay problem. However,
none have yet been widely deployed due to both a reduction
in network utilisation and complicated optimal configuration.

Legacy AQMs monitor queue occupancy based on bytes
or packets in the queue. If the queue length becomes larger

than a specific threshold, AQM infers congestion and reacts
accordingly based on the congestion level. A well-known
example of such statistical AQM is Random Early Detection
(RED) [32]. Many queue occupancy-based AQMs have been
proposed to mitigate different issues [33], [34], [35].

More recently, new AQM mechanisms have emerged that
rely on queue delay measurement rather than queue occupancy.
Queue delay is directly correlated to the network metric that
AQM is intended to manage. These new AQMs are able to
achieve high throughput and better delay control with low
complexity. Further, these AQMs are designed to perform
reasonably using their default configurations. Well-known ex-
amples of such AQMs are CoDel (Controlled Delay) [36] and
PIE (Proportional Integral controller Enhanced) AQM [37],
[38].

Moreover, hybrid AQM/scheduler schemes have been pro-
posed to improve fairness between competing flows while
keeping queuing delay low. They achieve these goals by di-
verting the flows into separately managed queues and applying
an individual AQM instance for each queue. This separation
protects low rate flows from aggressive flows while the indi-
vidual AQM instances control the queue delay. Examples of
hybrid AQM/scheduler schemes are FQ-CoDel (Flow-Queue
CoDel) [39] and FreeBSD’s FQ-PIE (Flow-Queue PIE) [40].
In addition to control queuing delays and provide relatively
equal sharing of the bottleneck capacity, these AQMs provides
short periods of priority to lightweight flows to increase
network responsiveness.

Figure 5 illustrates simplified FQ-CoDel and FQ-PIE al-
gorithms where flows are hashed to separate queues which
are managed by either CoDel or PIE AQM. These queues
are serviced using a deficit round robin scheduler with higher
priority for new flows.

Sub‐queues

Output packets
Input packets

O
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 q
u
eu

es

Flows hashing

N
ew

 q
u
eu

es

Deficit round 
robin scheduler per‐queue

CoDel/PIE

Fig. 5. Simplified FQ-CoDel/FQ-PIE AQMs

IV. TCP CONGESTION CONTROL LITERATURE -- SIGNALS
AND ALGORITHMS

In Section II we explained that CC algorithms try to
estimate available bandwidth to optimally configure cwnd and
maximise network utilisation. However, accurate bandwidth
estimation is hard to achieve. Instead, CC algorithms use
one or more congestion feedback signals to infer whether the
path is under or over utilised. Senders react by increasing or
reducing cwnd appropriately.
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A. Implicit Congestion Feedback Signals

In many cases network infrastructure does not provide
enough information to end hosts regarding the current network
condition. As such, end hosts need to infer network state
indirectly. One such mechanism is the congestion state of
the path. Congestion state may be a simple binary signal
or more advanced signal indicating the level of congestion.
These signals are used to infer congestion without requiring
support from middleboxes in the path between the sender and
receiver. Typically, TCP uses either loss or delay signals to
infer congestion.

1) The loss signal : Packet loss is used as a loss signal
by many TCP CC algorithms to indicate network congestion.
When a bottleneck experiences transient congestion, packets
are queued until buffer space is exhausted. When this occurs,
any new packets arriving at the bottleneck will be discarded
until the queue drains, freeing up buffer space.

A sender typically detects packet loss using either the TCP
Retransmission Time-Out (RTO) timer, or via three duplicate
acknowledgement (3DUPACK) packets.

The RTO timer fires for a packet when no ACK is received
for that packet, or any packet after it, within the RTO period of
time. This event may occur during heavy loss situations due
to severe network congestion and/or high noise in the link.
RTO also commonly triggered due to loss of last packet in a
window (tail drop) when the sender has nothing more to send
for longer than an RTO period (application limited flows). For
example, if the sender transmits three segments and the third
segment lost, then there is no direct way for the receiver to
inform the sender (using ACK) that it has not received last
segment. Therefore, the sender will keep waiting unit RTO
trigged.

Figure 6 illustrates a simple case of the RTO mechanism. No
ACKs are received and the RTO timer causes the first packet
to be retransmitted. The RTO timer must be tuned correctly to
maximise link utilisation. Too large a value results in longer
periods with no traffic, while too low a value wastes bandwidth
due to multiple transmissions of successfully received packets.
TCP Tahoe introduced improved RTO time estimation [41].
The original TCP CC specification included just the RTO
mechanism to detect losses.

Alternatively, lost packets result in unordered packet arrival
at the receiver. In this case, an ACK is constructed containing
the sequence number of the missing packet for each subse-
quent packet arrival. With 3DUPACK, the sender uses the
arrival of the third duplicate ACK packet (four identical ACKs)
to infer that the corresponding packet was lost and trigger a
retransmission [21].

Detecting congestion using 3DUPACK will typically occur
more rapidly than waiting for the RTO timer to fire. This
allows for a quicker recovery through the fast retransmission
process as shown in Figure 7.

The 3DUPACK mechanism was introduced by TCP Tahoe
[41]. TCP uses a threshold of three duplicate ACKs as a
balance between the speed of loss detection and false positive
detection due to the possibility of out-of-order delivery by the
IP layer.

Sender Receiver

RTO fired / packet 
retransmission

TimeTime

Fig. 6. A simplified Seq./ACK numbers timeline showing a case of TCP
retransmission timeout

Sender Receiver

3rd dup. ACK 
received / fast 
retransmission 

TimeTime

Fig. 7. A simplified Seq./ACK numbers timeline showing 3DUPACK and
fast retransmission mechanisms

Unlike other inferred congestion signals, determining the
loss signal does not require precise timers or time calculations,
and is simple to implement with minimal code. This was
important when TCP/IP was first developed as processing
resources were more limited. The simplicity of the loss signal
is why standard TCP (and key variants such as TCP CUBIC
[42]) use it to infer congestion.

While using loss feedback is effective and easy to imple-
ment, it has some drawbacks. Firstly, using the loss signal, we
can infer congestion only after network congestion becomes
high enough to cause packet loss. The higher use of buffering
capacity leads to longer queuing delays. This can lead to a poor
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quality of experience for latency sensitive applications sharing
the bottleneck’s buffer, such as VoIP and online gaming.

Secondly, packet loss is not always caused by network
congestion. In some wireless networks packet loss may be
caused by high bit error rate (BER) or user mobility [43]. The
data link layer of modern wireless networks provides better
reliability such that upper layers will rarely see packet losses
on these networks. Link layer reliability instead translates into
additional latency fluctuations at the IP layer, with subsequent
implications for delay-based CC. These will be further dis-
cussed in Section VI-B. As such, while the performance of
conventional TCP on older wireless networks can be signifi-
cantly affected by random packet losses, this is not true for
modern wireless networks.

2) The delay signal : Measurement of delay can also be
used to infer network congestion. The delay can be directly
measured in the form of RTT or One Way Delay (OWD), or
calculated as a delay gradient signal to more directly measure
changes to delay. Figure 8 illustrates the delay signal between
two hosts connected over a bottleneck.

Buffer size

Sender Receiver

Measuring RTT/
OWD based on 

ACK pkts

One‐way delay (forward)

Queuing delay

One‐way delay (reverse)

= Data pkt
= ACK pkt

Bottleneck

Round‐trip Time (RTT)

Fig. 8. Delay congestion feedback signal

Some studies argue that there is low correlation between
measured delay and congestion in many cases [44], [45], [46].
However, McCullagh and Leith [47] studied the correlation
between the delay signal and congestion and concluded that
the flow’s aggregate behaviour is what is important for delay-
based CC, not a single observation by one flow. Also, Prasad
et al. [48] investigated the reasons for the weak correlation
between delays and losses caused by congestion and identify
conditions under which the delay signals can fail to provide
durable congestion feedback.

The delay signal provides more timely feedback of network
congestion than the loss signal or even an explicit feedback
signal. This is important for large BDP networks (also called
Long Fat Networks LFNs) [49]. Unlike the loss signal, the
delay signal gives approximate information on the degree of
congestion such that the CC algorithm can proactively reduce
the sending rate before packet loss occurs, or even before the
queuing delay becomes high.

Moreover, the delay signal is also effective in lossy network
environments. When packet loss occurs unrelated to conges-
tion, packet delivery time will not increase and the delay signal
is unaffected. As a result, a delay-based CC has the potential
to be more tolerant to random packet losses and may perform
better in lossy network environments.

Many delay-based CC algorithms use measured RTT as a
delay signal, because this only requires TCP sender side mod-

ification. As a path’s RTT combines the forward and reverse
OWD, there is no way to distinguish what component of delay
originates in the forward or reverse path. Including the reverse
path delay in estimating queuing delay can lead to unnecessary
cwnd backoff when the reverse path is congested. Congestion
in the reverse path is not caused by the aggressiveness of the
sender, and decreasing cwnd will not improve congestion.

Some delay-based CC algorithms attempt to use only the
OWD along the forward path (direction of data flow), to
avoid reacting to congestion in the reverse path. One method
of OWD calculation is to timestamp packets before trans-
mission. At the receiver, the packet timestamp is extracted
and subtracted from the local time. The receiver attaches the
calculated OWD to the ACK reply packet.

A problem with this approach is that the direct calculated
OWD will not have any meaning without strict time syn-
chronisation between the sender and the receiver which is
difficult to achieve. However, if the CC algorithm computes
the difference between the calculated OWD and OWDbase

(OWDmin), then the difference will be the one way queuing
delay without time synchronisation.

OWDq = OWD −OWDbase

The downside of using OWD in CC is that it requires
receiver side modification, making deployment of such CC
algorithms more challenging.

An alternative is to use the TCP timestamp extension [50] to
calculate OWD. The sender subtracts the TS Echo Reply from
the TS Value fields in the ACK packet to estimate the forward
OWD. However, TCP timestamp is an optional feature which
not all stacks implement or enable by default. Also, OWD
measurement can suffer from clock drift between the sender
and the receiver, leading to an increase or decrease of OWD
estimation over time. This issue can be addressed by either
resetting the OWDmin measurement regularly, or by using
methods to estimate clock drift [6], [51].

Generally, the delay signal is used to estimate the queuing
delay Dq for the bottlenecks along the path between the source
and the destination. As a bottleneck queue fills, the packet
queuing time is translated to latency.

Most delay-based CC algorithms calculate Dq from the
path delay by estimating the fixed base (or propagation) delay
Dbase. Dbase is practically determined as the smallest delay
Dmin seen during a period of time and assumes that the
queues along the path completely drain (no queuing delay)
at some points during that period. Then, Dq is estimated as
Dq = D −Dbase where D is the measured delay.

Despite the potential advantages of using the delay signal, it
comes with a number of difficulties. Primarily, the assumption
that Dbase equals Dmin is not always true, which can lead to
over or under-estimation of Dbase.

Over-estimation of Dbase leads to an under-estimation Dq

and can result in non-detection of a congested network state.
Alternatively, under-estimation of Dbase can result in false
detection of network congestion. Errors in measuring Dbase

are caused by persistent queues in the bottleneck. The ag-
gressive nature of loss-based CC algorithms are an obvious
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source of standing queues in a heterogeneous environment,
however standing queues can be formed by delay-based CC
algorithms as well. Most delay-based CC algorithms try to
achieve optimum throughput, requiring cwnd to be at least
BDP (see section II-A). This results in queues always being
partially filled. These errors can impact on CC performance
where algorithms can be either over or under-aggressive,
leading to to problems such as unfairness, the latecomer
advantage, and generation of persistent large queues.

The latecomer advantage problem describes the case where
a new flow gets higher bandwidth share (higher throughput)
through a congested bottleneck than preexisting flows [52].
This problem is common in threshold delay-based CC algo-
rithms that aim to maintain a constant number of packets in the
queue. For example, Figure 9 plots cwnd versus time for the
staggered starts of three LEDBAT flows (section V-A7) sharing
a bottleneck. The plot illustrates how the new flows increase
their cwnd (achieving higher throughput) while the existing
flows decrease their cwnd (achieving lower throughput).
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Fig. 9. cwnd vs time illustrates the latecomer advantage problem

This is due to each new flow measuring a higher Dmin

due to existing standing queues in the bottleneck. This leads
to overestimating Dbase, allowing the new flow to be more
aggressive in increasing cwnd. At the same time, existing
flows decrease their own cwnd as they interpret the new flow’s
aggressiveness as network congestion.

A second challenge is the assumption that the path delay is
unchanged during a connection’s life time, or at least over a
period of time. However, this assumption is also not always
true (for example, due to path rerouting) [53], [54].

Another challenge when using delay signal is the noisiness
of delay measurement due to variation in queue occupancy
and network jitter. The noise is exacerbated under a heavy
load environment and weakens the correlation between the
sampled delay signal and congestion [49].

The noise can be reduced using a filter, such as the exponen-
tially weighted moving average (EWMA) filter [51]. However,
filtering the signal may reduce the responsiveness of delay-
based CC.

One final issue when using delay signal is delayed ACKs.
The TCP delayed ACK option is used to reduce the number of
ACK packets in the reverse path to reduce resource wastage.
Delayed ACKs can cause inaccurate Dq estimation if the ACK
is incorrectly matched to the corresponding data packet.

Instead of treating the delay as a pure signal (threshold),
the delay-gradient can be used to infer congestion. Use of the
delay gradient was first proposed by Jain in the CARD CC
algorithm which uses the normalised delay-gradient of RTT
to detect congestion [55].

Hayes et al. [10] proposed a new algorithm that utilises the
average smoothed delay-gradient ḡn of RTTmin and RTTmax
seen in the measured interval to estimate congestion level.
Using the gradient of minimum and maximum RTT, and the
average smoothed filter, reduces the noisiness of the RTT
gradient. Depending on ḡn sign and magnitude, CC algorithm
can increase or decrease cwnd. Using this signal it is possible
to distinguish between packet loss related to congestion and
loss related to a noisy environment such as a wireless network.

In addition to using the delay signal in congestion detection,
some CC algorithms use this signal in calculating cwnd.
Moreover, it is worth noting that not only delay-based TCP
CC algorithms utilise the delay signal but also other transport
protocols. For example, LDA+ [56] and MLDA [57] rely on
the delay measurement in additional to loss signal to control
sending rate of Real-time Transport Protocol (RTP) [58] and
UDP multicast respectively.

B. Explicit Congestion Feedback Signals
Explicit congestion feedback refers to explicit signals sent

by the bottleneck to inform the end-host of the congested
state of the bottleneck. The sender’s CC algorithm should
respond to the signal by reducing cwnd. Bottlenecks use
different mechanisms to detect congestion in their buffers
and mark packets when congestion is encountered. It is clear
that explicit feedback signals needs cooperation from the
bottleneck, network protocol and transport protocol in order
to function.

Explicit feedback for TCP/IP is typically implemented
using the Explicit Congestion Notification (ECN) extension
[3]. In the forward path, ECN supports packet marking,
using dedicated bits in the IP header to encode congestion
state.Additionally, ECN utilises bits within the TCP header
which are used to inform the sender that congestion has
happened and an action has been taken place.

If the router supports ECN, it marks the packet when the
congestion is detected. When processing the marked packet,
the receiver sets a flag in the ACK packet. Upon receipt of an
ACK with congestion flag set, the sender reduces its cwnd.

To support ECN, a bottleneck router needs to detect and
signal congestion before complete exhaustion of available
buffer space, such as using AQM in place of the traditional
Droptail mechanism (as described in section III). The AQM
can then mark ECN-capable IP packets when congestion is
experienced (rather than drop them).

As originally proposed [3], TCP was expected to react to
an ECN signal in the same way as to packet loss (e.g. halving
cwnd for TCP Reno). However, a new proposal suggests
that cwnd should be reduced by a smaller amount for an
ECN signal than for packet loss as the ECN signal is likely
generated by an AQM-enabled bottleneck emulating a small
queue [59]. This new proposal can improve TCP throughput
without causing network collapse.
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While using explicit feedback for CC reduces packet loss
and can improve overall network performance, there are some
difficulties. Middleboxes, including old, non-ECN aware fire-
walls, intrusion detection systems, and load balancers, may
respond with an RST (reset connection) packet or drop the
packet silently when processing a packet with the ECN enable
flags set.

Another issue involves non-compliant hosts which pretend
to support ECN during connection negotiation but do not re-
spond to marked packets. This results in the receiver attaining
higher throughput than other flows sharing the bottleneck, and
increased congestion in the bottleneck.

This vulnerability can be addressed in the AQM by dropping
packets instead of marking them when congestion exceeds a
specific threshold. For example, PIE has a safeguard against
such behaviour by dropping ECN enabled packets when
queuing delay becomes high, and the sender will reduce
cwnd as a reaction to packet loss. An alternate solution is to
segregate flows into queues using scheduling techniques such
as FQ-CoDel or FQ-PIE (section III-B), thereby isolating well-
behaved flows from unresponsive flows.

ECN-based CC approaches rely on explicit congestion feed-
back to estimate congestion intensity and react (by reducing
cwnd) in different degrees based on that intensity. The purpose
of this type of CC is to provide a low-latency and high-
throughput protocol with low loss rate for controlled network
environments such as data centres. Unlike AQM configured
for conventional TCP, ECN-based CC algorithms require
AQMs to mark packets much earlier (having lower target
delay/occupancy and very short burst tolerance) to provide
very low latency. The throughput of ECN-based CC will
not be affected by such very shallow buffer emulation since
cwnd back-off factor is adaptive based on congestion intensity.
A well-known example of ECN-based CC approaches are
DCTCP [60], Deadline-Aware Data Center TCP (D2TCP)
[61] and L2DCT [62]. It is worth noting that a recent study
proposes an architecture called L4S [63] to use ECN-based CC
on the Internet by utilising a special type of AQM (e.g. DualQ
Coupled AQM [64]). The proposed AQM separates classic
TCP flows from ECN-based flows in two different queues and
then priority packet scheduler is used to provide fair bandwidth
share.

C. TCP Congestion Control Algorithms
Standard TCP deploys a combination of techniques (slow

start (SS), congestion avoidance (CA), fast retransmit and
fast recovery) to respond topacket losses [21]. SS is used
to probe the link capacity when no previous information is
available about the link. CA aims to prevent heavy network
congestion while adapting to changes in network conditions.
Fast retransmit and fast recovery are used to quickly resend
the missing packets and recover from theses losses. In this
section, we describe these algorithms in some detail as they
are considered the base for most TCP variants.

1) Slow Start: In the absence of specific network feedback,
a TCP sender is typically unaware of path capacity when
a connection is first established. TCP uses the slow start
algorithm to initially probe a path’s capacity.

To begin a new connection in SS mode, TCP sets cwnd
to the Initial Window (IW) and transmits this IW of bytes.
For each received ACK that acknowledges new data, cwnd is
increased by no more that one MSS, typically doubling cwnd
every RTT. This mode is referred to as slow start because
the sender does not begin with cwnd set to some large (and
potentially excessive) initial value.

TCP exits SS and enters congestion avoidance mode when
congestion is detected. Path capacity is estimated as a portion
of cwnd that was realised when the congestion was detected.

To distinguish between SS and CA modes, TCP maintains
a state variable called slow start threshold (ssthresh). The SS
algorithm runs when cwnd < ssthresh, otherwise the CA
algorithm is executed. Initially, ssthresh is set to a high value to
allow the SS algorithm to probe available bandwidth quickly.
Following each congestion event, ssthresh is set as a multiple
(usually half) of cwnd.

Figure 10 plots cwnd progression and RTT versus time for
TCP Reno. The first six time samples cover the SS phase of
the flow. The exponential growth of cwnd is shown in Figure
10a where cwnd increases to about 27 MSS at time 5RTT.
In Figure 10b, we also see that RTT increases above the base
RTT of 40ms after time 2RTT once cwnd becomes larger than
the path BDP. RTT continues to increase to about 170ms when
the bottleneck queue is full and packets are dropped.
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Fig. 10. TCP Reno Slow-Start and Congestion Avoidance
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When packet loss is used to detect congestion, the ex-
ponential growth of cwnd can lead to a large overshoot
of the optimum value. This can result in high packet loss
within one RTT, leading to waste in network bandwidth, long
unresponsive periods and increased loads on the end-host
operating systems during the loss recovery period [65]. This
problem is exacerbated in networks with large BDPs network
as cwnd grows to a large size and there is an increased time
period before congestion feedback is noticed by the sender.

Consequently, improvements have been proposed to find
a safe exit point from SS without resulting in high packet
loss and low bandwidth utilisation. One proposed algorithm
is Hybrid Start (HyStart) [65] which uses the ACK trains
technique and sampled RTT to find a safe exit point to CA.

2) Congestion Avoidance: During congestion avoidance
(CA), TCP CC tries to avoid congestion by increasing cwnd
slowly during periods of no congestion, and reducing it
significantly when congestion is detected. Some algorithms try
to stabilise cwnd when they infer that the available bandwidth
is fully utilised.

The standard technique for maintaining cwnd is the Additive
Increase/Multiplicative Decrease (AIMD) algorithm, where
cwnd increases linearly by α once per RTT and multiplica-
tively decreases it by β (where α and β are algorithm specific
constants). For example, TCP Reno uses α = 1 and β = 0.5
[21], resulting in cwnd increasing by no more than one MSS
bytes per RTT, and being halved when congestion is detected.

In order to keep cwnd ≥ BDP and achieve full link
utilisation (see Section II-A), cwnd should be greater than
2 × BDP upon packet loss. This can be achieved only if
the bottleneck buffer size equals at least the BDP of the
connection. Otherwise, after backoff cwnd will be dropped
to less than BDP and require multiple RTTs in CA mode to
regrow back to BDP. This can cause severe degradation of
throughput in large BDP networks.

To simplify implementation, the additive increase can be
performed using the appropriate byte counting method. The
number of acknowledged bytes is accumulated until they
become greater than cwnd, and then cwnd is increased by
one MSS. Another formula that can be used to update cwnd
is given in equation 1.

cwndi+1 = cwndi +MSS ∗ MSS

cwndi
(1)

When congestion is detected via RTO firing, TCP resets
cwnd to one MSS and sets ssthresh to no more than half
of flight size. The missing packets are then resent and TCP
reenters SS.

When congestion is detected via 3DUPACK, TCP enters the
fast retransmit and fast recovery phase.

3) Fast Retransmit and Fast Recovery: TCP Tahoe enters
a fast retransmission phase when packet loss is detected via
3DUPACK. The missing packet is immediately retransmitted,
ssthresh is set to half of cwnd and cwnd is reset to one MSS.
TCP then enters SS.

TCP Reno augments the response to 3DUPACKs with fast
retransmission and fast recovery [21]. The missing packet is
immediately retransmitted, ssthresh is set to half of cwnd and

cwnd is set to ssthresh plus 3×MSS. This inflates the conges-
tion window to reflect the three packets that departed the host
after the missing packet. cwnd is subsequently incremented
by one MSS for each additional duplicate ACK received as a
reflection of the additional packets delivered to the destination.
When new data is ready to be sent, TCP should send one MSS
worth of bytes if cwnd allows.

Fast recovery finishes by receiving a new ACK that ac-
knowledges unacknowledged data. After that, TCP Reno sets
cwnd to ssthresh, and enters CA.

TCP Reno fast recovery is inefficient when multiple packets
losses occur in the same transmission window since the
cumulative acknowledgement doesn’t reflect losses after the
first missing packet. A new fast recovery algorithm called
NewReno was proposed to address this issue [25].

Another solution to multiple losses within a window is
to use the TCP Selective Acknowledgment (SACK) option
[26]. SACK allows the receiver to inform the sender the exact
sequence of bytes that have been received so the sender need
only resend the missing segments without waiting for multiple
RTTs. The number of SACK blocks (range of received bytes)
within one packet is limited by the TCP options field. As a
consequence, SACK may not be able to provide all received
byte ranges if many non-contiguous losses occur within one
window.

D. Congestion Control Metrics

It is important to understand congestion control evaluation
metrics to be able to study and compare the performance of
different CC algorithms. Various CC algorithms are designed
with different aims and working environments. Some protocols
focus on improving specific metrics while others focus on
trading-off multiple metrics. The main metrics for evaluating
congestion control mechanisms are [66]:

• Throughput: The amount of data sent per time interval.
Can be measured for routers as aggregate link utilisation,
for flows as connection transfer times, and for users as
user wait times.

• Delay: Measures the additional queuing delay caused by
the CC algorithm.

• Packet Loss Rate: Measures wastage of network re-
sources.

• Fairness: The degree of equality in resource allocation.
• Convergence time: The time required to for flows to

converge to fairness.
CC algorithms often need to consider a trade-off between
metrics. For example, loss-based CC typically has higher
throughput at the expense of increased delay and packet loss.
Alternatively, delay-based CC has improved delays and packet
loss at the expense of lower throughput when competing with
loss-based flows. To achieve both high throughput and low
queuing delay, CC schemes aim to maximise the power metric
[67]. Power metric is given in Equation 2 where x is flow’s
throughput, RTT is the current round trip time and α is a
constant. If α > 1, power metric will give a preference
to throughput over the response time of the flow (higher
throughput, higher queuing delay). If α < 1, this metric gives
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a preference for the response time (lower throughput, lower
queuing delay).

power =
xα

RTT
(2)

The choice of CC algorithms and preferred performance
metrics are influenced by application requirements. However,
in environments that include a mixture of loss and delay
based CC, the ideal outcome is typically unachievable. Pure
delay-based CC can suffer from unfair resource allocation as
they typically defer to loss-based CC due to the high queue
occupancy caused by loss-based CC.

Ensuring fair capacity sharing is not a trivial task, especially
when different CC algorithms coexist over the same path, or
when flows travels over different path distances. One of the
most commonly used indices for measuring resource sharing
fairness is Jain’s fairness index [68] [66]. Jain’s index is given
in Equation 3 where n is number of flows and xi is the
throughput of the ith flow. This index ranges from 0 to 1, and
is at a maximum when all flows receive the same allocation.

fairness =

(
n∑
i=1

xi

)2

n
n∑
i=1

x2i

(3)

When a new flow joins a shared bottleneck, bandwidth
should be reallocated for all competing flows. Convergence
time in a high BDP environment is important as large amounts
of data can be transferred over short time intervals.

One measurement of convergence time is the delta-fair
convergence time [69]. This measures the time taken for two
flows to go from a fully unfair share of the link capacity,
to having near fair sharing of link capacity. The time is
calculated as per Equation 4, where B is the total bandwidth,
δ is the fairness wants converge to and b0 is the initial
bandwidth allocated to the new flow.

δ − fair conv = (B − b0, b0) → (
1 + δ

2
B,

1− δ
2

B) (4)

In addition to these metrics, robustness to noisy environ-
ments, misbehaving users, minimising cwnd oscillations and
dependability are considered important in many cases.

V. CC ALGORITHMS THAT UTILISE THE DELAY SIGNAL

We propose a taxonomy (Figure 11) to categorise the
behaviour of TCP Congestion Control Algorithms with respect
to their use of different congestion signals. Within this taxon-
omy we define primary categories of: 1) ECN-Based which
use explicit congestion notification as described in Section
IV-B; 2) Loss-Based which primarily rely on packet loss as
a congestion signal; 3) Delay Based which primarily rely
on the delay signal; 4) Hybrid which use a combination of
both Loss and Delay signals; and 5) Bandwidth Estimation
Delay Sensitive which use link capacity estimation and delay
measurements to regulate the sending rate.

We further sub-classify Loss Based algorithms into Pure
Loss Based approaches and Delay Sensitive algorithms to
differentiate those that may occasionally use the loss signal
to achieve their aims. We also sub-classify hybrid algorithms
into Dual Signal and Dual mode algorithms.

Dual signal approaches utilise both loss and delay signals.
The delay signal allows the CC algorithm to scale quickly
without stressing the network. They are usually deployed in
large BDP networks where traditional loss-based approaches
can be slow to achieve high link utilisation.

Dual mode approaches alternate between using loss and
delay signals based on internal state. They typically use the
delay signal to infer early congestion and better manage queue
latency, and revert to using the loss signal when competing
with loss-based flows to achieve reasonable inter-flow fairness.

Pure loss based and ECN-based approaches are out of scope
for the rest of this paper.

In general, CC algorithms that utilise the delay signal use
RTT or OWD based metrics to detect the degree of network
congestion. Although different CC algorithms may use cus-
tomised metrics, common delay metrics are queuing delay,
queue occupancy or delay gradient. Algorithms that estimate
queuing delay attempt to keep latency under a predefined time
threshold. Algorithms that estimate queue occupancy attempt
to keep bottleneck buffer utilisation to a specific threshold
(bytes or packets) or to perform early detection of congestion
events. Delay gradient algorithms avoid the use of thresholds
to avoid issues around RTT and base RTT estimation.

A. Delay-based Algorithms

Most delay-based CC algorithms are threshold-based which
infer early congestion in the network when the measured delay
signal exceeds a pre-configured or dynamically calculated
threshold or thresholds. A few use delay-gradient approaches
to infer network congestion by monitoring congestion trends
in bottleneck buffer and make decisions based on the rate of
change of queuing delay.

Most delay-based CC algorithms aim for high link util-
isation with short bottleneck queues. However, others are
designed for background bulk file transfer applications, and
typically aim is to achieve a lower bandwidth share when
competing with standard flows. Delay-based CC can achieve
high throughput by reducing the oscillatory cwnd behaviour
of standard TCP by slightly reducing the window size when
the queuing delay reaches a defined threshold.

Unfortunately, CC algorithms of this category typically suf-
fer from unfair resource allocation when sharing a bottleneck
with loss-based CC and experience the latecomer advantage
problem described in Section IV-A2. Table I summarises the
properties of the delay-based TCP variants reviewed in this
section.

1) TCP DUAL: In 1992, Wang and Crowcroft [70] pro-
posed an enhanced algorithm, called TCP DUAL, to minimise
the oscillation of TCP Tahoe’s cwnd dynamic in CA mode.
Dampening these oscillation helps reduce fluctuations in buffer
utilisation that can lead to RTT instability and periodic packets
losses.
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Fig. 11. Taxonomy of TCP congestion control techniques reviewed in this survey

TABLE I
DELAY-BASED TCP VARIANTS REVIEWED IN SECTION V-A

TCP variant Section Algorithm aims Delay signal type Metrics
TCP DUAL [70] V-A1 minimise cwnd oscillation of TCP Tahoe, better throughput RTT queuing delay
TCP Vegas [22] V-A2 minimise cwnd oscillation, low queuing delay, better

throughput
RTT queue occupancy

TCP Vegas-A [53] V-A3 remedy TCP Vegas path re-routing and fairness issues RTT queue occupancy
FAST TCP [71], [72] V-A4 scalability in large BDP networks, low queuing delay RTT queue occupancy
TCP NICE [7] V-A4 low priority, low queuing delay RTT queue delay
TCP-LP [51] V-A5 low priority, low queuing delay OWD queue delay
TCP PERT [73] V-A6 low queuing delay RTT queue delay
LEDBAT [6] V-A7 low priority, low queuing delay OWD queue delay
TIMELY [74] V-A8 low queuing delay in datacentre environments RTT delay gradient
TCP LoLa [75] V-A9 scalability in large BDP networks, low queuing delay RTT queue delay

TCP DUAL estimates the queuing delay using RTT mea-
surement to indicate the network congestion level and reduces
cwnd before a packet loss happens. The algorithm assumes that
the base RTT is RTTmin , and RTTmax represents the RTT
of the highest congestion level along the path. RTTmin and
RTTmax measurements are reset whenever RTO is triggered.
At any time, the two-way queue delay (Qi) can be estimated
shown in equation 5.

Qi = RTTi −RTTmin (5)

DUAL attempts to keep the queuing delay at a point
between the minimum and maximum queue delay (Qi →
δ × Qmax) where Qmax = RTTmax − RTTmin and 0 <
δ < 1 ( δ = 0.5 is used in [70]). In other words, it
attempts to keep the RTT close to a threshold th where
th = (RTTmax +RTTmin)× δ.

On every other received ACK, if RTTi > th, TCP DUAL
multiplicatively decreases cwnd by 7/8 to fine tune the RTT

around th. If network congestion is detected using RTO
mechanism, TCP DUAL behaves similarly to TCP Tahoe i.e.
ssthresh = cwnd/2, cwnd=1 and moves to SS phase. If no
congestion is detected using the delay or loss signals, TCP
DUAL increases cwnd by one MSS every RTT.

Due to the delay component of TCP DUAL, this algorithm
is affected by the latecomer advantage unfairness problem.
Additionally, in common with other delay based back-off
schemes, TCP DUAL flows can suffer from low bandwidth
sharing when competing with loss-based flows.

2) TCP Vegas : An early, well known delay-based TCP
CC, TCP Vegas [22] aims to achieve maximum throughput,
low packet loss and queuing delay, with minimum cwnd oscil-
lation. It uses cwnd, the current RTT and RTTbase (derived
from the minimum witnessed RTT ) to regularly estimate the
number of in-flight bytes that reside in the bottleneck buffer,
while aiming to keep this number small.

TCP Vegas deploys an Additive Increase Additive Decrease
(AIAD) approach when congestion is controlled using the
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delay component. cwnd is increased by at most one MSS
every RTT, ensuring the algorithm is not more aggressive
than standard TCP. When packet loss is detected, TCP Vegas
mimics standard TCP by halving cwnd.

During CA, TCP Vegas calculates the difference between
the expected and actual sending rate to estimate the data
currently queued at the bottleneck. The expected sending rate
can be calculated as the throughput when no congestion is
present in the bottleneck i.e. the RTT equals RTTmin:

expected rate =
cwndi
RTTmin

The actual sending rate is the calculated based on the actual
RTT (RTTi ) :

actual rate =
cwndi
RTTi

To estimate the number of queued packets at the bottleneck
∆, the difference between the rates is multiplied by RTTmin:

∆ = (expected rate− actual rate)×RTTmin (6)

TCP Vegas calculates ∆ upon receipt of each ACK and
compares ∆ with algorithm parameters α and β (default α = 1
and β = 3). These parameters control the length and stability
of the bottleneck queue. The protocol aims to maintain the
queue length between α and β.

When ∆ < α , TCP Vegas increases cwnd by one segment
during the next RTT . When ∆ > β, network congestion is
inferred and cwnd is decreased by one segment during the next
RTT . Otherwise cwnd is left unchanged.

The rationale of this algorithm is that if a sender can send
a cwnd worth of data without observing a large increase in
RTT , this means the link is under-utilised and we can increase
cwnd. Alternatively, if the increase in RTT is such that ∆
exceeds threshold β, this means the link is over-utilised and
we should reduce cwnd.

TCP Vegas also proposes an enhancement to the TCP Reno
SS mechanism to detect the available bandwidth and exit SS
before packet loss occurs. Specifically, it exits SS when ∆ > α
where ∆ is calculated as above upon receipt of every other
ACK. TCP Vegas also introduces a more timely technique to
detect loss before receiving the third duplicate ACK.

Although these modifications aim to reduce the stress on the
network, experimental results [22] show a very small impact
on overall network performance due to the short working time
of SS and fast retransmission compared with CA.

Barkmo and Peterson [22] claim that TCP Vegas is able to
achieve 37% to 71% better throughput and reduction in packet
losses by 1/5 to 1/2 than TCP Reno on the Internet. Unfortu-
nately, later studies [23], [76], [77], [78], [79] demonstrate a
number of issues with TCP Vegas including 1) low fair share
of bandwidth when competing with Reno-style flows (loss-
based CC); 2) low throughput following sudden increases in
base RTT (eg. path rerouting); and 3) latecomer advantage
(section IV-A2) due to incorrect base RTT estimation.

3) TCP Vegas-A: Despite the limitations, TCP Vegas still
displays desirable characteristics. Srijith et al. [53] claim that
the re-routing and fairness problems when sharing a bottleneck
with Reno flows can be remedied by dynamically adapting
α and β coefficients based on the actual sending rate. They
propose a modification to TCP Vegas called TCP Vegas-A.

Vegas-A uses the default α and β values (1 and 3 respec-
tively) at the start of the connection, and keeps these values
as the minimum boundaries. After that, Vegas-A dynamically
changes these values based on the network conditions.

When α < ∆ < β, the algorithm is in steady state. Vegas-A
attempts to probe the available bandwidth to adjust α and β
to maximise throughput. When Vegas-A detects an increase in
the actual rate, α, β and cwnd are incremented.When α > 1,
∆ < α and there is a decrease in the actual transmission
rate, Vegas-A assumes that the coefficients have been over-
estimated and decreases α, β and cwnd. When α > 1, ∆ < α
and there is an increase in the actual transmission rate, cwnd
is increased. Otherwise, the algorithm adjusts cwnd using the
TCP Vegas rules.

Using ns-2 simulations, Srijith et al. [53] show overall
improvement with TCP Vegas-A compared to TCP Vegas for
the path re-routing issue over both wired and fluctuating RTT
satellite links. They also show better fairness when Vegas-A
competes with TCP Reno flows.

However, Vegas-A is still unable to obtain fair capacity
sharing with Reno-style flows when the number of flows
is small. Further, when the number of TCP Vegas-A flows
becomes relatively high, the fairness problem inverts and the
Vegas-A flows get a higher capacity share than Reno flows.

4) FAST TCP: Inspired by the TCP Vegas idea of control-
ling congestion based primarily on the delay signal, Jin et al.
[71], [72], proposed FAST TCP, targeting low queuing delays
and high bandwidth utilisation in large BDP paths.

Similar to TCP Vegas in the steady state, FAST tries to
maintain a fixed number of packets (α) in the bottleneck queue
by using RTTbase (derived from observed RTTmin) and the
current average RTT . Instead of adjusting cwnd by one MSS
every RTT interval, TCP FAST updates cwnd every fixed
interval (eg. 20ms) using the specialised equation:

wi+1 = min

{
2.wi, (1− γ).wi + γ

(
RTTmin
RTTi

wi + α

)}
The window smoothing factor (γ) is a configurable param-

eter between 0 and 1 that affects the window update response
to congestion. The target number of packets in the queue (α)
is a constant that controls the protocol fairness.

Selection of α is an open challenge but the authors of
FAST TCP used large values (eg. 200) in their experimental
evaluation [72]. The window adjustment step is large when
the the current RTT is close to the base RTT , and small as
the protocol approaches the steady state (α packets buffered
in the queue).

FAST TCP also uses packet pacing to control the bursti-
ness of the congestion window mechanism in a large BDP
environment and to provide accurate RTT measurement.
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Emulated network and simulation based experiments show
good overall throughput, scalability, stability, RTT -, inter- and
intra-fairness for FAST TCP [71], [72].

However, Tan et al. [80] show unfairness problems and large
variation in queue occupancy related to inaccurate propagation
delay estimation, as for TCP Vegas. This inaccurate estimation
happens during route change and standing queue scenarios.
They also find that the FAST TCP cwnd update rule is more
aggressive than standard TCP which can cause unfairness in
specific scenarios.

Unlike most congestion control algorithms, FAST TCP is
a commercial CC algorithm and is protected by patents [81],
[82]. It is one of the few delay-based algorithms that is actually
used in practice over the Internet.

TCP NICE
TCP Nice [7] is a scavenger class CC algorithm based

on TCP Vegas with a more sensitive congestion detection
mechanism. TCP Vegas by itself provides low priority CC due
to its proactive reaction to congestion, but not low enough to
be scavenger class CC.

During one RTT interval, TCP Nice counts the number of
times that the estimated bottleneck queuing delay is greater
than a fraction of the maximum queuing delay. In other words,
the number of times measured RTT is larger than RTTmin +
(RTTmax −RTTmin)×threshold), where threshold defines
the target fraction.

If the count is greater than a fraction of the congestion
window, TCP Nice halves cwnd, otherwise it behaves like TCP
Vegas. When loss is detected, TCP Nice halves cwnd.

Another mechanism used to ensure low priority is that cwnd
is allowed to decrease to a value lower than one, this postpones
packet delivery for a number of RTTs.

Although TCP NICE flows realise low throughput when
competing with Reno-style flows, there is a concern about
how well NICE can utilise the available capacity when just
LPCC flows exist. As with TCP Vegas, NICE also experiences
the latecomer advance problem due to incorrect base RTT
estimation.

5) TCP-LP: TCP-LP [51] is an LPCC algorithm that aims
to utilise available bandwidth without affecting foreground
TCP flows. Unlike TCP NICE, TCP-LP uses EWMA smooth-
ing of one-way delay measurements to infer queuing delay in
the forward path, avoiding delay fluctuations caused by reverse
path traffic.

TCP-LP uses the TCP timestamps option [50] to calculate a
form of OWD as the difference between receiver’s timestamp
in the ACK packet and the sender timestamp copied to
the ACK. Without synchronised clocks this is not a true
OWD (section IV-A2), so TCP-LP utilises the minimum and
maximum measurements to calculate one-way queuing delay.

TCP-LP infers early congestion in the forward path when
equation 7 is true (a similar strategy to that used by TCP
Nice), where we are measuring if queuing delay is greater
than a fraction of the maximum queuing delay.

OWDi > OWDmin + (OWDmax −OWDmin)× th (7)

TCP-LP reduces cwnd more aggressively than standard TCP
when congestion is detected. At the first sign of congestion,
cwnd is halved. If another congestion event occurs within
one RTT, TCP-LP infers that persistent congestion exists in
the network and subsequently sets cwnd to one MSS. During
periods of no congestion, cwnd is increased similar to TCP
Reno.

Using ns-2 simulation and a real-world Linux implementa-
tion, the authors of TCP-LP [51] show that TCP-LP achieves
its design goals of yielding available bandwidth to competing
standard TCP flows, and high bandwidth utilisation with good
fairness when no high priority flows are competing.

It is unknown how well TCP-LP will achieve its goals in
an AQM or wireless environment. More evaluation is required
for this and similar techniques in different scenarios.

6) PERT: Probabilistic Early Response TCP (PERT) [73]
is a delay-based algorithm that emulates AQM and the end-
host without modification to the bottleneck. PERT authors
claim that any AQM can be emulated at the end-hosts but
they choose RED [32] and PI [83] AQM.

PERT uses a probabilistic back-off function (Pbackoff )
based on delay measurements at the end host. On every re-
ceiving ACK, PERT smooths the instantaneous RTTi sample
using Exponentially Weighted Moving Average (EWMA) to
produce SRTTi to reduce signal noise. Then it uses SRTTi
and RTTmin to calculate back-off probability.

PERT defines three thresholds thmin (defaults to RTTmin+
5ms) , thmax(defaults to RTTmin+ 10ms) and Pmax (defaults
to 0.05). By using RTTmin, PERT estimates instantaneous
queuing delay similar to TCP DUAL. Pbackoff is zero if
SRTTi is less than thmin. Pbackoff increases linearly until
it reaches Pmax when SRTTi equals thmax. Then, Pbackoff
increases faster to reach one when SRTTi becomes larger than
or equal 2.thmax. Figure 12 shows the back-off probability
function that PERT uses.
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Fig. 12. PERT back-off probability function

PERT uses 0.65 multiplication decrease factor if the con-
gestion is detected using the delay component and 0.5 if
packet loss occurs. Additionally, it responds to congestion
once every RTT since the effect of back-off is not observed
until after an RTT. This reduces the number backing off times
per congestion event.
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Using ns-2 network simulator[84] and fluid mathematical
model, PERT authors [73] find that this algorithm achieves
very low queuing delay and all most no packet loss with good
fairness between competing PERT flows. They also find that
PERT is able to utilise the link in similar way as using AQM on
the bottleneck. However, PERT does not solve the coexisting
with loss-based flows problem and PERT authors highlight
some possible solutions as future work.

Kotla et al. [85] propose a modification to PERT to allow
better coexistence with loss-based flow by increasing the
additive increase factor if high queueing delay is observed.
However, it has been shown the this modification causes high
loss rate and high queueing delay in many scenarios [86].
Without a functional coexistence mechanism, PERT cannot
be deployed on the Internet since loss-based algorithms are
the most widely used CC.

7) LEDBAT: Low Extra Delay Background Transport
(LEDBAT) [6] is an LPCC that is widely implemented in dif-
ferent bulk transfer applications such peer-to-peer file transfer
[87] and software updates. LEDBAT aims to keep the forward
queuing delay relativity small to reduce interference with other
flows, particularly flows used by latency sensitive applications
such as Voice over IP (VoIP).

Similar to most delay-based CC, LEDBAT monitors queu-
ing delay and considers an increase in that delay as an early
signal of network congestion. By responding to this signal,
LEDBAT flows defer to competing standard TCP flows.

As for TCP-LP, LEDBAT uses OWD measurement instead
of RTT to avoid delay fluctuations in the reverse path.

LEDBAT utilises a predefined target threshold (default
100ms) for queuing delay. When no packet loss is detected,
LEDBAT proportionally increases or decreases cwnd based
on the relative difference between the target and estimated
queuing delay (equation 8). If loss is detected, LEDBAT
behaves like standard TCP by halving cwnd.

cwndi+1 = cwndi +
G×MSS × ∆ ×Backed

cwndi
(8)

The gain scale (G) determines the cwnd growth/decline rate
and should be no greater than one to ensure LEDBAT is not
more aggressive than the standard TCP. Backed is the number
of newly acknowledged bytes. ∆ is the normalised difference
between the one-way queuing delay and target and is defined
in equation 9.

∆ =
(target + OWDbase −OWDi)

target
(9)

LEDBAT requires OWD measurement to be made for every
packet transmitted by the sender in order to react accurately
and quickly to changes in delay.

LEDBAT maintains a history (default ten entries) of base
OWD where each element represents the measured OWDmin

in a one minute interval. OWDbase is the minimum value of
this list. The history is used to minimise the effect of sudden
changes in base OWD estimation caused by delayed ACK,
clock skew and re-routing problems.

Due to the low impact of LEDBAT flows on latency
sensitive applications, BitTorrent, a very popular peer-to-peer
file sharing protocol, uses this algorithm in its UDP-based

transport protocol [88], [89]. Additionally, Apple Inc. imple-
mented TCP-based LEDBAT to be used for sending operating
system updates to their clients [9].

A number of studies has been evaluated the performance
of LEDBAT [90], [54], [4]. These studies have found that
LEDBAT introduces increasing delay due to measuring its
self-induced delay, and suffers from issues related to incor-
rect propagation delay estimation (unfairness and latecomer
advantage problems). Moreover, a study found that a special
care should be taken when choosing LEDBAT parameters in
AQM environments since cwnd backs-off will be controlled
using loss signal as the delay will never reach LEDBAT target
delay; otherwise LEDBAT flows become too aggressive [91].

8) TIMELY: TIMELY [74] is a rate-based delay-gradient
CC algorithm optimised to function in a datacentre environ-
ment without the need for additional support from intermediate
nodes such as network switches and routers. The authors state
that TIMELY can achieve high throughput while maintaining
low packet latency by relying on accurate RTT measurements
for congestion detection.

RTT is typically very small in a datacentre environment, and
software time-stamping is too inaccurate to to measure RTT.
As such, the authors suggest using hardware time-stamping
provided by modern Network Interface Cards (NICs) to obtain
accurate microsecond resolution RTT measurements.

TIMELY uses a delay-gradient signal similar to CDG (sec-
tion V-B3). Due to the high accuracy of the RTT measure-
ments, the raw RTT can be used rather than RTTmin and
RTTmax.

TIMELY also uses rate-based congestion control rather than
a window-based mechanism. The Rate Computation Engine
calculates the required sending rate from the delay-gradient
signal, and the packet transmission is managed by the Rate
Control Engine.

RTT is measured once every chunk of data (16KB - 64KB).
TIMELY uses two threshold values for RTT of Tlow and Thigh
specifying lower and upper bounds for acceptable RTT.

TIMELY infers the network is under-utilised if RTT <
Tlow; or Tlow < RTT < Thigh and the normalised RTT
gradient is negative. In this case the sending rate is additively
increased by δ.

TIMELY infers the network is over-utilised if RTT >
Thigh; or Tlow < RTT < Thigh and the normalised RTT
gradient is positive. In the first case, the sending rate is reduced
using equation 10. In the second case, the sending rate is
multiplicatively reduced in proportion to the RTT gradient and
β using equation 11.

rate = rate×
(

1− β ×
(

1− Thigh
RTT

))
(10)

rate = rate× (1− β × normalized_gradient) (11)

The authors of TIMELY claim that this is the first delay-
based CC algorithm to be used in a datacenter environment
and is able to achieve high throughput and low latency without
ECN support. They also found a strong correlation between
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RTT and queue occupancy if an accurate measurement with
proper sampling is used [74].

As TIMELY requires NIC hardware support, deployment is
only possible where appropriate hardware is present. Further,
Zhu et al. [92] found using fluid model and simulation
that TIMELY converges to a stable point, but with arbitrary
unfairness.

9) TCP LoLa: TCP LoLa [75] is another threshold delay-
based congestion control algorithm that aims to achieve high
link utilisation in long distance and high bandwidth networks
while keeping the bottleneck queuing delay low. TCP LoLa
endeavours to keep bottleneck buffer utilisation around a
fixed target Qtarget value regardless of the number of flows
competing for bottleneck bandwidth. Moreover, it attempts to
achieve fairness between flows having different path’s RTT by
using a proposed Fair Flow Balancing mechanism. In general,
TCP LoLa is an enhanced TCP Vegas based algorithm with
CUBIC cwnd growth function, better inter-flow RTT fairness
and better RTTmin estimation.

More specific, TCP LoLa algorithm relies mainly on es-
timating the current two-way queuing delay Qi using TCP
DUAL method (Section V-A1, Equation 5). Similar to Vegas
in SS phase, TCP LoLa uses queue occupancy based condition
(Qi > 2.Qlow) to exit SS before packets losses occur to
prevent building-up long queue.

In CA phase, it uses the CUBIC TCP [42] algorithm to
grow cwnd when Qi is less than a predefined threshold Qlow.
If Qi > Qlow, LoLa enters fair flow balancing state to realise
inter-RTT fairness. In this state, all flows sharing a bottleneck
attempt to keep an equal number of bytes X in the bottleneck’s
buffer at the same time. X is calculated according to Equation
12 where φ is a constant and t is the difference between
current time and time at entering the balancing state. The
number of bytes in the buffer Qdata is estimated the same
Vegas queue occupancy estimator (Equation 6). During the
fair flow balancing if Qdata < X(t), cwnd increases based
on the difference between X(t) and Qdata; otherwise cwnd is
leaved unchanged.

X(t) =

(
t.1000

φ

)3

(12)

A flow exits the balancing state and enters cwnd holding
state when Qi > Qtarget. In cwnd holding state, cwnd is
kept unchanged for a certain amount of time (e.g. 250ms) to
make all flows to return to normal operation state at the same
time. After the holding time elapsed, cwnd decreases using
a modified CUBIC function to realise a fully drained buffer.
This allows flows to obtain a good RTTmin estimations.

Using a TCP LoLa Linux implementation and an emulated
network testbed, TCP LoLa authors [75] state this algorithm
is able to achieve high link utilisation, low queuing delay
and good scalability in 100Mbps and 10Gbps links. However,
the main weakness of this algorithm is it cannot coexist
fairly with loss-based CC in typical FIFO queue management.
It relies completely on the bottleneck (e.g. using AQM or
isolating loss-based flows from low-latency flows in separate
queues) to provide fair share when competing with loss-based

flows. Therefore, it is practically very hard to deploy this
CC protocol globally. Additionally, it is not clear how this
algorithm behaves in shallow buffers and how it reacts to
packet loss.

B. Dual Mode Approaches

Since delay-based CC algorithms respond to congestion
feedback much earlier than loss-based CC, delay-based flows
realise low link capacity sharing when competing with loss-
based flows especially when bottleneck’s buffer is large. Dual
mode CC approaches work around that issue by switching to
aggressive mode (loss mode) as soon as buffer filler flows are
detected. They stay in the loss mode for an interval or until
loss-based flows finish, then they return to normal delay mode.
Different algorithms have different loss-based flows detection
techniques but all of them use the delay signal in that matter.
Table II summarises the dual mode TCP variants reviewed in
this section.

1) TCP Vegas+: Hasegawa et al. [77] proposed TCP Ve-
gas+ to address some of the fairness issues identified with
TCP Vegas (section V-A2). This algorithm borrows the ag-
gressive cwnd growth function of TCP Reno and the moderate
TCP Vegas approach to produce a hybrid congestion control
technique. In CA, TCP Vegas+ employs TCP Vegas algorithm
when no loss-based flow is detected, and moves to TCP Reno
cwnd increase mode if an aggressive flow is inferred to be
sharing the bottleneck.

TCP Vegas+ uses the following heuristic to detect the loss-
based flows based on the trend of RTT. One every received
ACK, a state variable count is incremented by 1 if Vegas+
detects an increase in the current RTT while cwnd is not
increased. On the contrary, it decrements count by 1 when
RTT decreases while cwnd is not increased. Moreover, the
algorithm halves count when packet loss is detected using the
3DUPACK mechanism (see Section IV-A1) and resets it when
the loss is detected using the RTO timer.

If count reached a predefined threshold (such as 8), the
algorithm moves to the aggressive (loss-based) mode, and
it returns to the moderate (delay-based) mode when count
becomes zero.

The notion of the loss-based flow detection algorithm is that
in a stable network, RTT should not increase when cwnd is
unchanged unless there is a Reno-like flow competing for the
bottleneck bandwidth. If the algorithm sees such RTT increase,
it assumes another loss-based flow is sharing the bottleneck
so must itself moves into the loss-based mode. On the other
hand, the algorithm moves back to Vegas mode as soon as
a packet loss is detected because that loss could happen due
to the aggressive cwnd growth of TCP Vegas+ flow itself.
Vegas+ uses the count threshold as an attempt to reduce the
false positive detection of loss-based flows.

Although this approach attempts to solve the friendliness
problem, it does not address the other issues of TCP Vegas
such as rerouting problem. Additionally, in some environments
that include high congestion or high RTT fluctuations (such
as wireless networks), TCP Vegas+ could enter the aggressive
mode and never exit from it due to wrong RTT measurements.
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TABLE II
DUAL MODE CC APPROACHES REVIEWED IN SECTION V-B

TCP variant Section Algorithm aims Delay signal type Metrics
TCP Vegas+ [77] V-B1 solves TCP Vegas inter-protocol fairness issue RTT queue occupancy

YeAH TCP [93] V-B2 scalability, low stressing on the network, low queuing delay,
non-congestion related tolerance RTT queuing delay, queue

occupancy

CDG [10] V-B3 low queuing delay, tolerance to non-congestion related
losses, standard TCP compatibility RTT RTTmin and RTTmax

gradient
Cx-TCP [94] V-B4 low queuing delay, coexistence with loss-based flows fairly RTT queuing delay

Copa [95] V-B5 high throughput, low queuing delay, coexistence with
loss-based flows fairly RTT queuing delay

Nimbus [96] V-B6 high throughput, low queuing delay, coexistence with
loss-based flows fairly RTT, queuing delay, RTTmin

This makes the algorithm act as loss-based most of the time,
eliminating the advantages of the delay component.

Moreover, TCP Vegas+ evaluated by the authors [77] using
simulated network only in which RTT measurements are not
realistic since it does not reflect the noise of RTT signal in
the real world or emulated environments.

2) YeAH TCP: Yet Another Highspeed TCP (YeAH) is a
hybrid congestion control algorithm by Baiocchi et al. [93]
that aims to achieve high throughput in large BDP networks
but without stressing the network. YeAH originates from the
observation that other high speed CC algorithms (such as HS-
TCP [97] and STCP [98]) improve throughput in large BDP
networks at the cost of high ‘stress’ on the network, causing
frequent congestion events with large number of packet losses
as well as high queuing delay.

Similar to TCP-Africa (Section V-C1), YeAH works on one
of two modes at a time depending on the congestion level. In
fast mode, the congestion window increases aggressively using
STCP rules while in slow mode TCP Reno rules are applied.
The decision of changing from one mode to another is also
based on Vegas-like estimation of the number of packets in
the bottleneck buffer and congestion level estimation (TCP
DUAL-like metric). However, these estimations are redefined
by YeAH in such way that RTTbase is the minimum RTT seen
during the connection lifetime, RTT sample (RTTmini) is the
minimum RTT seen during the transmission of last window
(i.e. measured once per RTT) and the congestion level is
calculated as a proportion to the RTTbase but not to the Qmax.
Formally, it calculates the queue delay (Qi) using equation 13,
queue size (∆i) using equation 14 and the congestion level
(Li) using equation 15

Qi = RTTmini −RTTbase (13)

∆i = Qi.

(
cwndi

RTTmini

)
(14)

Li =
Qi

RTTbase
(15)

If ∆i < δ and L < 1/ϕ, the algorithm switches to the
fast mode, otherwise the slow mode is used. δ is a tunable
constant (for example, 80 packets) which governs the number
of packets pushed by one flow in the bottleneck buffer.ϕ

is another tunable constant (for example, 8) the limits the
congestion level caused by all flows sharing a bottleneck.

Moreover, a precautionary de-congestion algorithm is
utilised in the slow mode to control the queuing delay and
buffer overflow. Whenever ∆i > δ and with no Reno-like
greedy flows competing for the bottleneck, cwnd is reduced
by ∆i and ssthersh is set to cwnd/2 once per RTT. YeAH
detects the competing greedy flows based on the mode switch-
ing behaviour of the algorithm in order to achieve inter-
protocol fairness. The algorithm calculates countfast which
is the number of RTTs the algorithm spend in the fast mode
and cwndreno representing an estimation for the congestion
window of the greedy flows (maintained using Reno rules). If
countfast becomes greater than a threshold, cwndreno is set to
cwnd/2 and countfast is reset as an indication for competing
with other non-greedy flows.

The precautionary de-congestion can be applied only if
the algorithm is in the slow mode and cwnd > cwndreno,
otherwise Reno-style window growth is used.

Finally, based on TCP Westwood (Section V-D1), the al-
gorithm exploits the queue size after packet loss to find an
optimum window size when the loss is not related to network
congestion. This can improve the algorithm performance in
lossy environments such as wireless networks.

Experimental evaluation shows that YeAH is able to realise
very good throughput and low queuing delay in fast and
long distance network as well maintaining intra- and RTT-
fairness and friendliness. However, this approach needs more
evaluation in more complex networks and scenarios to confirm
the robustness against delay signal noise and distortion.

3) CAIA-Delay Gradient (CDG): CAIA-Delay Gradient
(CDG) [10] is a hybrid CC algorithm that tries to maintain low
queue delay and reasonable fairness by using delay-gradient
CC when possible, and loss-based CC when competing with
loss-based CC algorithms. CDG is also able to distinguish
between congestion related and random loss, behaving differ-
ently to achieve high goodput in lossy environments such as
a wireless network.

CDG uses delay-gradient measurements to detect network
congestion and bottleneck queue states (full, empty, rising and
falling). The notion of estimating the queue state allows CDG
to differentiate between congestion and random losses. CDG
considers the loss is congestion related only if the queue state
is full and never backs off cwnd when the losses are not
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congestion related.
As instantaneous RTT measurements are noisy, CDG calcu-

lates the average smoothed delay-gradient (ḡn) using RTTmin
and RTTmax seen in an RTT measured interval. The smoothed
average further reduces noise. The current CDG implementa-
tion uses ḡn calculated from RTTmin or RTTmax to estimate
congestion.

When no congestion occurs, CDG increases cwnd by one
MSS per RTT.

When congestion is detected using the loss signal and the
queue state is full, CDG halves cwnd. If the queue state is not
full, cwnd is unchanged.

When congestion is detected using the delay gradient signal,
equation 16 is used to probabilistically determine if CDG
should back off cwnd. The exponential factor achieves fairness
between flows with different base RTTs, while G is a scaling
factor that determines the algorithm aggressiveness.

pbackoff = 1− e−( ḡn
G ) (16)

When probabilistic backoff occurs, CDG decreases cwnd by
a backoff factor β = 0.7. The higher factor for β allows CDG
to maintain high link utilisation.

To help compete with loss-based flows, CDG uses the loss-
based shadow window technique first described in [99] and
ineffectual backoff mechanism. The shadow window mimics
TCP Reno window growth. CDG sets cwnd to the shadow
window as soon as a packet loss is detected. On the other
hand, ineffectual backoff is used to detect competing loss-
based flows so CDG can move to loss-based mode for a certain
interval.

The authors of CDG [10] claim that at 1% non-congestion
related packet loss, CDG achieves 65% bandwidth utilisation
compared with TCP NewReno at 35% under the same network
conditions. At the same time, CDG keeps bottleneck queues
short (particularly compared to loss-based CC).

Despite trying to compete with loss-based CC, early back-
off by CDG results in it being unable to attain fair capacity
sharing with loss-based CC. For this reason, and because of
its low latency, Armitage et al. [5] propose using CDG as an
LPCC for home networks to reduce the impact of background
traffic on latency-sensitive applications. Tangenes et al. [100]
evaluated CDG and also concluded that it is a good candidate
to be used as a deadline-aware LPCC as its priority can
be dynamically adapted using the scaling parameter G from
equation 16.

4) Cx-TCP: Coexistent TCP (Cx-TCP) [94] is another loss-
delay hybrid congestion control that attempts to provide low
latency transport while achieving better coexistence with loss-
based flows. Budzisz et al. [94] were inspired by the Proba-
bilistic Early Response TCP (PERT) [73] algorithm to use a
probabilistic back-off function based on delay measurements
at the end host.

The main difference between PERT and Cx-TCP is the
back-off probability function behaviour. PERT back-off prob-
ability function increases when the delay exceeds a threshold
(thmin) until it becomes one when the delay exceeds another
threshold (2.thmax). On the other hand, Cx-TCP back-off

probability function increases until the queuing delay exceeds
a specific threshold (Qth). After that point, the back-off
probability decreases as the queueing delay increases. When
the queuing delay reaches the maximum value (Qmax), the
probability becomes a very small value (i.e. protocol becomes
a full loss-based). This function allows Cx-TCP to coexist with
loss-based flows more fairly.

Pmax

Qmin Qth Qmax
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o
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b
ab
ili
ty

Queuing delay

Fig. 13. Cx-TCP back-off probability function

The rationale of the Cx-TCP back-off probability function
is that competing delay-based flows do not introduce a large
queuing delay, so queueing delay should generally be lower
than Qth. However, competing loss-based flows will cause the
queueing delay to exceed Qth. Therefore, Cx-TCP should re-
duce the number of back-off events to better coexist with loss-
based flows. When the loss-based flows leave the bottleneck,
Cx-TCP reverts to its low latency mode as the queuing delay
decreases below Qth.

Using analytical model and simulation, Budzisz et al. [94]
show that Cx-TCP is able to achieve better coexistence when
competing with loss-based flows while maintaining low queu-
ing delay in the absence of loss-based flows. However, this
algorithm assumes that the sender is able to obtain accurate
queuing delay measurements which is hard to achieve in many
realistic scenarios. Additionally, Cx-TCP flows may obtain a
low bandwidth share if the bottleneck has a shallow buffer that
does not allow queueing delay above the Qth threshold.

5) Copa: Arun et al. proposes a new loss-delay hybrid
congestion control for the Internet called Copa [95]. Copa
aims to achieve high throughput and low queuing delay and
to coexist with loss-based flows fairly.

The authors of this algorithm state that the bottleneck
bandwidth can be estimated as the inverse of the queuing
delay. Therefore, they define target sending rate thtarget to
be sending rate at which the sender can transmit to achieve
full bandwidth utilisation and low latency.
thtarget is calculated as thtarget = 1/(δ.Qi) where δ is an

adaptive parameter that controls the tread-off between through-
put and queuing delay, and Qi is the estimated queuing delay
calculated similar to DUAL (V-A1) but using RTTstanding
instead of current RTT. RTTstanding is RTTmin measured in
the previous RTT/2 interval to remedy ACK compression and
signal noise. Copa also calculates the actual sending rate th is
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calculated similar to Vegas (V-A2) but also using RTTstanding
instead of current RTT.

On each receiving ACK, If thtarget > th, cwnd increases
by v/(δ.cwnd) otherwise cwnd decreases by v/(δ.cwnd). v
(defaults to 1) controls cwnd increase/decrease speed and its
value is changed based on the direction of cwnd trend to make
Copa flows to converge quickly to full bandwidth utilisation.

This algorithm works in another mode, called competitive
mode, to be able to coexist with loss-based flows. It first
detects competing loss-based flows and then adjusts δ dy-
namically to make Copa’s flows as aggressive as loss-based
flows (i.e. behaving similarly to loss-based scheme). Detecting
loss-based flows is based on Copa working behaviour which
involves draining the queue periodicity. Thus, if the queu-
ing delay does not reach 10% of maximum queuing delay
measured in last four RTTs intervals, buffer-filling flows are
assumed to be competing with a Copa’s flow. Otherwise, the
algorithm works in the default mode.

Copa also changes SS exit condition to be thtarget < th
which provides fast convergence with low latency. Moreover,
Copa uses packet pacing to reduces traffic burntness.

Through simulation and user-space implementations, Arun
et al. [95] claim that this algorithm is able to achieve similar
throughput as TCP CUBIC but with much lower latency and
better RTT-fairness. They also state that Copa coexists with
CUBIC fairer than TCP BBR (Section V-D5). However, it is
not clear how well this algorithm performs in links with very
unstable latency such as wireless networks.

6) Nimbus: Nimbus [96] is a rate-based loss-delay dual
mode congestion control algorithm that aims to achieve low
queuing delay and high throughput while fairly coexisting with
loss-based flows.

Nimbus maintains a threshold-based, positive queueing de-
lay to both ensure full link utilisation and to estimate the
cross traffic rate. Nimbus calculates a sending rate equal to
the bottleneck rate minus the cross traffic rate. Formally the
sending rate is calculated using Equations 17 and 18.

D(i) = β
C

RTTi
(RTTmin +Qi −RTTi) (17)

S(i+ 1) = (1− α)S(i) + α(C − z(i)) +D(i) (18)

Where α=0.8, β=0.5, C is the bottleneck capacity and z
is the cross traffic rate estimation. RTTmin is the minimum
RTT, RTTi is the current RTT and Qi is the current queuing
delay. Bottleneck capacity C can be estimated using any
bandwidth estimation technique such as in [101], [102], [103],
[104]. Due to ACK compression and other problems, Nimbus
implementation uses the maximum received rate as estimation
for bottleneck capacity.

Nimbus models the elasticity of cross traffic to infer the
existence of competing loss-based flows, and then switches
to TCP-competitive mode (CUBIC-like). This algorithm cal-
culates the periodicity behaviour of link capacity using the
Fast Fourier transform. Nimbus uses the observation of high
frequency behaviour to conclude the presence of competing

loss-based flows. When the frequency becomes low, Nimbus
switches back to delay-based mode.

Using user-space implementation with emulated and real-
world experiments, Goyal et al. [96] evaluate Nimbus and
show that this algorithm is able to detect competing CUBIC
and Reno like flows and achieve fair bandwidth share and low
queuing delay (lower than BBR (Section V-D5)). However, the
authors of this algorithm state that this algorithm is unable to
detect competing BBR flows in shallow bottleneck buffers.
Therefore, Nimbus flows obtain lower bandwidth share. Addi-
tionally, Nimbus considers competing delay-based flows (such
as Vegas) as elastic flows and therefore it obtains much higher
capacity sharing after moving to TCP-competitive mode.

C. Dual Signal Approaches

Due to the limitations of using the loss signal, some TCP
CC variants introduce the delay signal in their work as a sup-
plementary signal in addition to the loss feedback.Generally
speaking, the dual signal CC approaches are designed to
be scalable in fast and long-distance network environments
without stressing the network by increasing cwnd rapidly when
the queue is short and moving to slow standard cwnd growth
after the queue becomes long. In addition to that, they attempt
to maintain RTT fairness and compatibility with standard TCP.
Table III summarises TCP variants that use both the delay
signal (secondary signal) and loss signal reviewed in this
section.

1) TCP Africa: King et al. [105] propose a CC algorithm
called Adaptive and Fair Rapid Increase Rule for Scalable TCP
(Africa) to improve TCP scalability in large BDP networks.

TCP Africa operates in one of two regimes: aggressive
cwnd growth and conservative Reno-like cwnd increase. It
switches between the two regimes depending on the estimated
network congestion level in order to achieve fast convergence
and fairness to standard TCP.

The congestion level is estimated using Vegas-like metric
∆ (see Section V-A2). It then compares ∆ with a threshold
(α) to determine which mode should be used. If ∆ < α,
the fast mode is used in which cwnd increases aggressively
uses the HS-TCP [97] CA and fast recovery rules to achieve
scalability. Otherwise, TCP Africa moves to the slow mode in
which Reno-like cwnd growth style is used to achieve fairness
i.e. increases the window by one MSS per RTT when no loss
is detected and halves it on packet loss.

The value of α is chosen to be small constant greater than
1 (α =1.641 in [105]) and it affects the protocol performance.
The authors found that no single α is optimal for all networks
and conclude that more study is needed to make the value α
auto-tuned.

Simulations with ns2 show that TCP Africa can scale
quickly to full link utilisation, adapt quickly to network
condition changes, causes low packet loss rate as well as good
fairness and friendliness prosperities. However, real world
experiments should be conducted to confirm these results.

2) Compound TCP (C-TCP): Compound TCP (C-TCP)
[106] is a compound loss-delay-based CC that aims to achieve
high throughput in high speed high delay networks. Similar
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TABLE III
DUAL SIGNAL TCP VARIANTS REVIEWED IN SECTION V-C

TCP variant Section Algorithm aims Delay signal type Metrics
TCP Africa [105] V-C1 scalability in large BDP networks, friendliness RTT queue occupancy
C-TCP [106] V-C2 scalability in large BDP networks, friendliness RTT queue occupancy
TCP Libra [107] V-C3 scalability and maintain the compatibility with the

standard TCP, RTT fairness
RTT queuing delay

TCP-Illinois [108] V-C4 scalability and fairness RTT queuing delay

to TCP-Africa, it relies on the delay signal to increase cwnd
quickly when no congestion is detected and loss signal to
achieve fairness when competing with other flows.

C-TCP maintains two congestion windows, one is a standard
window Wreno managed by Reno-style mechanism and the
second is a scalable delay window Wfast based on TCP Vegas
like algorithm. The congestion window cwnd that is used to
control the outstanding data is the summation of Wreno and
Wfast.

When Vegas queue size estimator detects small queue
(∆ < α), Wfast is increased according to a modified AIMD
borrowed from HS-TCP algorithm [97]. On the other hand,
when Vegas estimator exceeds the threshold (∆ > α), Wfast is
gradually decreased by ζ×∆ where ζ is a pre-defined constant
(ζ = 30 in [106]). This approach provides fast convergence
when the queuing delay is short as well as a smooth transition
from the scalable congestion control to the standard TCP style.

Real-world and simulation experiments results [106] show
C-CTP exhibiting good goodput and inter/intra-fairness in a
large BDP environment. C-CTP is used by default for older
versions of Microsoft Windows operation system [109] and
replaced by TCP CUBIC in Windows 10 Fall Creator update
and Window Server 2016’s 1709 update [110]. The main
reason for abandoning C-TCP in Windows OS is the sensitivity
of the delay component to delay fluctuations which cases low
performance in many cases [110].

As the scalable component of C-TCP is basically the TCP
Vegas buffer estimator, it suffers similar fairness and latecomer
advantage issues when base RTT is wrongly estimated (Section
IV-A2).

3) TCP Libra: TCP Libra is a TCP CC proposed by
Marfia et al. [107] to remedy the RTT-unfairness problem of
NewReno when sharing a bottleneck link, improve scalability
and maintain compatibility with standard TCP. TCP Libra
utilises the delay signal to control cwnd growth/decline speed
in order to become RTT independent.

Instead of increasing cwnd by one MSS every RTT, Libra
increases the congestion window according to the equation 19.

cwndi+1 = cwndi +
αi

cwndi

RTT 2
i

RTTi + T0
(19)

On packet loss, Libra decreases the congestion window
according to equation 20.

cwndi+1 = cwndi −
T1.cwndi

2(RTTi + T0)
(20)

where T0 and T1 are constant parameters (eg. T0 = 1 and
T1 = 1). T0 controls the algorithm’s sensitivity to the RTT and

T1 is the multiplicative decrease factor. α is a control function
that aims to improve the convergence speed, the scalability
and the stability of the protocol, where here k1 is a protocol
constant (eg. 2) and C represents the link capacity in Mbps
estimated using the CapProbe technique [111] (Equation 21).

α = k1 C p (21)

p is a penalty factor that controls the the window increase
step when the network is congested based on queue delay
estimation borrowed from TCP DUAL (Section V-A1). p is
defined in Equation 22 where k2 is a constant (e.g 2) that
controls link utilisation and protocol friendliness, Q and Qmax
are the current and maximum queue delays respectively.

p = e−k2
Q

Qmax (22)

The estimated capacity C in Equation 21 allows the con-
gestion window to converge rapidly to fully utilise avail-
able bandwidth, while p reduces the window growth steps
exponentially when the queue delay increases. Moreover,
RTT 2/(RTTi + T0) control RTT-fairness of the protocol in
which as the RTT becomes close to T0, the cwnd growth speed
becomes faster.

The multiplicative decrease function (equation 20) shows
that cwnd is driven not only by T0 and T1 but also by
RTTi. This prevents a large cwnd decrease after packet loss,
providing better throughput in high RTT paths. However, this
approach goes against the accepted logic of CC as a large
RTT followed by packet loss is typically inferred as a clear
sign of congestion. As such, cwnd decrease should be larger
to control the congestion.

Using ns-2 simulator, the authors evaluate Libra and com-
pare its performance with other TCP protocols [107], showing
that Libra can achieve good fairness and high link utilisation
in many scenarios. However, in some scenarios TCP Libra
has lower performance comparing with TCP SACK and TCP
FAST. The authors conclude the the protocol needs more
evaluation using real world networks and in more complex
scenarios.

4) TCP-Illinois: TCP-Illinois is a TCP CC proposed by Liu
et al. [108] that utilises the loss signal as a primary congestion
feedback and the delay signal (queuing delay) as a secondary
congestion signal to improve the the scalability and fairness
of TCP Reno. The underlying idea is similar to TCP Africa
(Section V-C1) but rather than use HS-TCP [97] constants, the
increase (α) and decrease (β) factors are set to be functions of
the queue delay Qi (similar to TCP DUAL - Section V-A1).
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TCP-Illinois sets the increase factor to αmax if Qi < Q1

and αmin if Qi > Qmax ; otherwise it sets α to a concave
function inversely proportional to Qi between αmax and αmin.
Moreover, it sets the decrease factor to βmin if Qi < Q2 and
βmax if Qi > Q3; otherwise it sets β to a linear function
directly proportional to Qi between βmin and βmax. Qmin and
Qmax are minimum and maximum queue delay seen during
the connection lifetime, and Q1, Q2 and Q3 are proportions
(e.g. 0.01, 0.1 and 0.8 respectively) of Qmax. αmin, αmax,
βmin, βmax are protocol constants (e.g. 0.3, 10, 0.125 and
0.5 respectively).

This algorithm updates α and β once every RTT but does
not allow α to be set to αmax unless the queue delay stays
below Q1 for a specific amount of time (for example, 5
RTTs) to mitigate the effects of fluctuation in queue delay
measurement which can be caused by noisy RTT measurement
and packet bursts. Moreover, to improve the fairness with TCP
NewReno, the algorithm moves to compatible mode (Reno’s
α and β coefficients) whenever the window size is less than
a threshold (for example, 20KB).

The authors create a mathematical model to analyse and
compare TCP-Illinois with other CC algorithms, and conduct
simulation-based experiments to evaluate their algorithms’ per-
formance [108]. Their results show that TCP-Illinois achieves
higher link utilisation in large BDP networks compared to
TCP NewReno as well as maintaining protocol intra- and
inter-fairness. Moreover, the mathematical model shows that
the proposed protocol causes the competing flows to backoff
asynchronously which allows the congestion window of the
flows to be similar in size and therefore improve overall link
utilisation and fairness. However, as this approach primarily
uses the loss signal to detect congestion, it cannot control the
queue delay and therefore it can lead to bufferbloat problem
in large bottlenecks buffers.

D. Delay-sensitive AlgorithmsV-D

Some congestion control algorithms use the delay metric
for specific purposes not directly related to the congestion
feedback signal. These techniques use the delay signal to
calculate an effective congestion window size after packet
loss event and/or differentiate between congestion and non-
congestion related packet losses to improve the performance
in wireless networks. Others uses the delay metric to calculate
reasonable bytes inflight limit to realise both high throughput
and low latency. Table IV summarises the delay-sensitive TCP
variants reviewed in this section.

1) TCP Westwood/Westwood+: Mascolo et al. [112] pro-
posed TCP Westwood (TCPW) CC algorithm to solve the
low performance of NewReno in intrinsically lossy and fast
networks. TCPW modifies window multiplicative decrease
mechanism during fast recovery to calculate an optimum
window size based on the estimated bandwidth (BWE) and
RTTbase. The goal is for window size at any time to be
approximately equal to the path’s BDP, and hence achieve full
link utilisation with minimal undesirable queuing.

Westwood sets the window size and ssthresh to BWE ×
RTTmin when packet loss is detected, which is usually a less

aggressive reduction than simply halving cwnd. TCPW uses
RTTmin as an estimation for RTTbase. RTTmin is measured
as the smallest RTT sample seen during the connection life-
time.

Westwood’s strategy for estimating the bandwidth relies on
detecting the ACK receiving rate. If the receiver generates
an ACK packet directly after receiving a data packet, the
rate of ACK packets observed by the sender will be same
as the rate of data packets received by the receiver i.e. the
receiving rate equals the rate that the bottleneck supports.
Then, the estimation of the utilised bandwidth in the forward
path can be calculated by multiplying the ACK rate by number
of bytes acknowledged by ACK packet. Even when some
ACKs are lost or the receiver decides to use delayed ACK
mechanism, the calculation of long-term estimation will not
be significantly affected. Although the delayed ACK and ACK
packet loss reduce the ACK rate, the ACK packet will carry
acknowledgement for larger amount of data leading to an
acceptable estimation.

TCP Westwood applies two-stage bandwidth estimation pro-
cedure to reduce the impact of fluctuation on the measurement.
In the first stage, the bandwidth samplebk is calculated as
bk = dk/∆kwhere dk is the amount of data that has been
acknowledged and ∆kis elapsed time since the receiving of the
previous ACK. In the second stage, the final BWE is obtained
by applying a low-pass discrete time filter:

BWEk = α.BWEk−1 + (1− α)
bk + bk−1

2

where BWEk is the filtered bandwidth estimation, BWEk−1

is the previous estimation,α is a constant (α = 0.9 for
example) and bk, bk−1 are the current and the previous
bandwidth estimation samples respectively.

The evaluation results [112] show remarkable throughput
improvement in the presence of random errors compared with
TCP NewReno as well as very good inter- and intra-fairness.
However, Grieco et al. [119] discovered that the estimator
overestimates the bandwidth and causes unfriendliness in cer-
tain conditions. These conditions include ACK-compression
effect that clusters ACK packet arrivals due to congestion and
queue fluctuation in the reverse path [120] and employing
AQM in the router [121].

A slightly modified version of this algorithm, called TCP
Westwood+, was proposed to solve the ACK compression
effect [113] by computing the bandwidth samples every RTT
i.e. bk = dk/RTTk where dk is the amount of data that
has been acknowledged during the last RTT. The final BWE
value is obtained by applying exponentially weighted moving
average to the bandwidth samples bk.

With respect to the RTT measurement, TCP Westwood
creates a persistent queue in the bottleneck buffer if the
RTTmin is larger than the actual RTTbase, such as in statis-
tical multiplexing backoffs where many flows share the same
bottleneck. Wrong RTTbase estimation leads to a congestion
window larger than BDP after packet loss event causing
unfairness between the competing flows.

2) TCP Westwood-Based Algorithms: In this section we
briefly summarise a number of modifications proposed to
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TABLE IV
DELAY-SENSITIVE TCP VARIANTS REVIEWED IN SECTION

TCP variant Section Algorithm aims Delay signal type Metrics
TCP Westwood [112] V-D1 high throughput in lossy environments RTT RTTmin

TCP Westwood+ [113] V-D1 high throughput in lossy environments, improved
bandwidth estimator RTT RTTmin

TCPW CRB [11] V-D2 high throughput in lossy environments, better bandwidth
estimator, friendliness RTT RTTmin

TCPW ABSE [114] V-D2 high throughput in lossy environments, better bandwidth
estimator, friendliness RTT RTTmin

TCPW BR [115] V-D2 high throughput on heavy non-congestion related losses,
friendliness RTT RTTmin

TCP-AP [116] V-D3 high throughput in multihop wireless networks RTT coefficient of RTT variation

RAPID [117] V-D4 Full bandwidth utilisation in fast network with dynamic
bandwidth, low queuing delay and fairness OWD indirect queuing delay

TCP BBR[118] V-D5 low queuing delay, high throughput RTT RTTmin

remedy the vulnerabilities of TCP Westwood’s bandwidth
estimation technique.

TCP Westwood Combined Rate and Bandwidth estima-
tion (TCPW CRB) [11] aims to improve the efficiency and
friendliness of TCPW. It uses Rate Estimation (RE ), which
is long-term bandwidth estimation similar to what is used in
Westwood+ but measured over a constant time interval (T )
instead of RTT, in addition to Bandwidth Estimation (BE )
of TCPW. The rationale of using two estimators is that RE
prevent overestimation of the bandwidth when the network is
suffering from congestion, but it underestimates the bandwidth
when non-congestion related packet losses occur. TCPW CRB
calculates the congestion window size as BE × RTTmin
when packet loss is caused by random transmission error, and
RE×RTTmin when the loss is caused by network congestion.
TCPW CRB assumes that the loss is congestion related if
cwnd/(RE ×RTTmin) upon packet loss is is smaller than a
threshold (for example, 1.4); otherwise, the loss is assumed to
be a random loss.

The authors of TCPW CRB claim that the dual bandwidth
estimation method improves the trading-off of TCPW effi-
ciency and friendless to NewReno [11]. However, their claim
has been confirmed only using ns-2 simulation experiments.
Additionally, they conclude that more study is needed to
understand the impact of different conditions, such buffers
sizes, the error rate and AQM, on the friendliness of the
algorithm.

TCPW CRB authors later found that the time interval of RE
should not be constant during connection lifetime to provide
better friendless. Therefore, they proposed TCPW Adaptive
Bandwidth Share Estimation (TCPW ABSE) [114]. TCPW
ABSE adaptively changes the CRB sampling intervals depend-
ing on a congestion level estimation heuristic. The network
congestion level is estimated based on the difference between
the averaged sending rate sample (V E = cwnd/RTTmin,
Vegas estimation) and throughput sample (RE, Westwood+
estimation). If the difference is large, the network is considered
congested and large interval (one RTT) is used; otherwise a
small interval is used. The authors state that this technique pro-
duces more precise bandwidth estimation in different conges-
tion levels. Although ns-2 simulation shows that TCPW ABSE

is able to achieve very good fairness with TCP NewReno as
well as fast response to network conditions changes, real world
experiments are required to validate the results.

Yang et al. [115] showed that the previous TCPW-based
enhanced algorithms improve the throughput significantly in
lossy environments but with random error rate < 2%. There-
fore, they propose TCPW with bulk repeat (TCPW BR) to
improve the performance in extreme loss conditions. TCPW
BR uses dual mechanisms to discriminate between congestion
and non-congestion losses: the queue delay threshold method
based on TCP DUAL (section V-A1) and comparing band-
width estimation (BE ) to the expected throughput (VE) similar
to TCPW ABSE. If the packets losses seem to be caused by
channel transfer error, TCPW BR resends all packets in flight,
freezes RTO value and leaves cwnd unchanged; otherwise it
reacts to the losses same as NewReno. Using ns-2 simulation,
the author confirm the efficiency of the algorithm even at high
error rate (>5%) and the friendliness to TCP NewReno.

There are more TCPW variant techniques including: TCPW
Bottleneck Bandwidth Estimation (BBE) [121] which aims
to solve TCP Westood unfriendliness problem in different
network conditions including highly varying bottleneck buffer
sizes, AQM employment and heterogeneous flows RTT.

TCP Westwood with agile probing (TCPW-A) [122] aims
to provide better performance in highly dynamic bandwidth
networks as well as lossy environments. It achieves that by
repeatedly resetting ssthresh based on BE like estimation
and increasing cwnd exponentially (when ssthresh is lower
than the estimation) in SS phase to quickly converge to full
bandwidth utilisation, and does the same thing in the CA mode
if a persistence non-congestion is detected; otherwise it uses
NewReno cwnd increase function.

Similar to TCPW, all these modified algorithms can suffer
from unfairness problems in different degrees if the RTTmin
is an overestimation of RTTbase. Additionally, it is not clear
how they react to the bottlenecks that utilise AQM to control
the congestion in their buffers.

3) TCP-AP: TCP with Adaptive Pacing [116] is specialist
hybrid window/rate-based CC that proposed to improve low
performance of IEEE 802.11 multihop wireless networks.
More specifically, this approach aims to reduces reduces link
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layer contention by adjusting packet sending rate based on
contention estimation of the path. While window (cwnd) size
controls the number of bytes in-flight, the pacing rate is used to
provide smooth packet sending and preventing packets bursts.

This CC does not change any of standard slow-start, con-
gestion avoidance and congestion recovery algorithms. It only
controls the pacing rate of packet sending when cwnd allows
transmitting new data.

TCP-AP mainly uses two metrics to calculate packet pac-
ing rate. The first metric is the coefficient of RTT samples
variation which is used to estimate contention degree of the
path. The second metric is called out-of-interference delay
which is the time between sending a packet from a node and
receiving that packet at a second node existing outside the
signal collision range of the first node.

The authors of this algorithm [116] claim that TCP-AP is
able to achieve 10 times higher throughput than TCP NewReno
in an emulated wireless network with 20 nodes. They also state
that this algorithm provides good fairness with other flows
and responses quickly to network condition changes. However,
this algorithm relies on the RTT measurement which suffers
from ACK compression and other packet delays caused by
wireless link layer reliability (see Section VI). Moreover, this
algorithm requires additional information from the operating
systems, such as number of hops and data link parameters,
which makes the kernel-space implementation complicated.

4) RAPID: RAPID congestion control [117] is rate-based
approach that aims to realise fairness and high throughput
in fast networks with dynamic bandwidth while maintaining
inter- and intra-protocol fairness and low queuing delay.
Although this algorithm does not utilise the delay signal
explicitly in its operation, the theory behind RAPID is based
on the queue delay growing up.

The authors of this algorithm claim that conventional
TCP CC algorithms are not able to achieve full bandwidth
utilisation in fast networks with variable bandwidth due to
slow bandwidth probing technique of those algorithms. More
specifically, conventional TCP bandwidth probing requires one
RTT time interval to realise the result of a new probing
cycle and the new rate probing is not much larger than the
previous rate (cwnd typically increases by one MSS every RTT
interval). Therefore, many RTT intervals are required before
converging to full bandwidth utilisation.

RAPID is able to probe multiple rates by sending groups of
N packets with N-1 different rates in each group i.e. increases
the gap between the sending packets of a group. At the receiver
host, the inter-packet arrival times (the gaps) of each group is
monitored. If the gaps trend increases (i.e. gapi > gapi−1),
this means the bottleneck queue started to build-up since every
packet sent at a faster speed then its preceding will cause
additional delay in packet delivery (larger gap). Then the
estimated bandwidth will be the rate before seeing positive
gaps trend (i.e. ratei−1). If gapi ≤ gapi−1 for all groups,
the sender generates and transmits more groups with higher
sending rate until the receiver obverses positive gap trend (i.e.
gapi > gapi−1). The receiver then explicitly sends the value
of ratei−1 to the sender host to use it as sending rate.

Using ns-2 [84] implementation of RAPID, Konda et al.
[117] claim that this algorithm can converge to full bandwidth
utilisation of gigabit networks in 1-4 RTTs while keeping the
queue short. They also state that RAPID provides good fair-
ness and a small impact on conventional TCP flows. However,
this algorithm requires receiver-side modification which makes
the global deployment very hard. Additional, RAPID requires
high timer resolution to send packets at an accurate rate which
is hard to achieve for many hosts and produces additional
overhead. Moreover, similar to many delay-based algorithms,
RAPID can suffer and produce unpredictable behaviour in
wireless networks due to collision avoidance and data link
frame recovery of these networks which change packets trans-
mission pattern.

5) TCP BBR: Bottleneck Bandwidth and Round-trip prop-
agation time [118] is a recent congestion control algorithm
that aims to solve the bufferbloat problem and improve TCP
throughput. Rather than seek a feedback signal to detect
congestion, BBR controls congestion by pacing the sending
rate according to the currently estimated bottleneck bandwidth
BW and RTTmin.

A delivery rate sample is calculated as the ratio between
delivered data and time elapsed for delivering that data. BBR
uses a windowed maximum filter over a 6-10 RTT period for
delivery rate samples to obtain a BW estimation.

As a secondary control mechanism, BBR utilises a TCP-
like cwnd mechanism to limit the maximum amount of inflight
data. This window is set to a few multiples of BDP (with BDP
calculated as BW×RTTmin) to remedy common receiver and
network issues such as delayed and aggregate ACKs.

A windowed minimum filter for RTTi is used to estimate
RTTmin. If RTTmin does not change and no RTT sample
matches RTTmin for 10 second period, the number of packets
inflight is reduced to 4 for a short period to drain the buffer
and probe for a new RTTmin. This allows BBR to refresh its
RTTmin estimate as well as permitting flows to converge to
a fair share of the bandwidth.

BBR maintains one BDP worth of packets inflight most
of the time to guarantee full link utilisation with low queuing
delay. Periodically, BBR increases the sending rate and inflight
size to 125% for an RTT interval to probe available bandwidth
and changes the paced rate accordingly. If BW remains
unchanged, the sending rate and inflight size is reduced to
75% to drain the built-up queue. BBR then returns to normal
operation of using 100% of the estimated BW and inflight
size.

TCP BBR has been implemented in Linux and deployed in
Google services since 2015, achieving 2 to 25 times greater
throughput than CUBIC [118].

BBR’s authors evaluate the algorithm in large variety of
scenarios and network environments. They claim that BBR
improves throughput and reduces latency compared with TCP
CUBIC, while being able to achieve acceptable fairness.
However, the authors agree that BBR has problems in specific
situations and requires more research to remedy these issues.

For example, BBR flows obtain a lower share of bandwidth
when competing with loss-based flows through a bottleneck
with a large (several BDPs) buffer. Additionally, BBR flows
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can suffer from unexpected packet loss when token-bucket
traffic policers are used. More specifically, when BBR sends
packets faster than the bucket fill rate, all packets are discarded
by the policer.

Moreover, Hock et al. [123] conduct experimental evalua-
tion of TCP BBR in an emulated environment and conclude
that BBR is able to achieve its goals. However, they also
find that BBR produces a large number of packets losses,
unfairness and long queuing delay in some scenarios, specially
in shallow bottleneck buffer. There is also a big concern in
transport research communities regarding BBR packets losses
ingratiation as well as ECN support ingratiation.

Although the algorithm attempts to remedy the wrong
estimation of RTTbase using RTTmin measurement reset
mechanisms, it is not clear how well this method works in
environments with long standing queues causing by other
CC algorithms/flows. Therefore, more evaluation is need to
understand how the wrong estimation can affect its operation.

VI. CHALLENGES FACING THE DELAY SIGNAL

A. Inaccurate delay measurements

As we mentioned in Section IV-A2, many problems facing
the use of delay signal causing undesirable side effects for
congestion control techniques that benefit form this signal.
Usually, inaccurate delay measurement happens due to queue
fluctuation, burst packet sending, delayed ACK, hardware
transmission offloading, link layer buffering (especially in
wireless networks) as well as inaccurate sampling. Addition-
ally, interference between competing flows causes the delay-
based techniques to wrongly estimate the congestion level.
This includes wrong propagation delay estimation (which is
used by many algorithm) due to route change and sequence
of flow starting time (latecomer advantage problem).

Reverse path congestion is another problem that can dis-
tort the delay signal when the RTT metric is used. When
congestion happens in the reverse path (ACK path), the RTT
metric will not reflect the real congestion state of the network
(forward path) since the ACK packets are small and do
not contribute to the congestion. Therefore, some algorithms
utilise the one-way delay signal instead. However, unlike
using RTT, the one-way delay metric needs receiver side
modification or enabling TCP timestamp option which makes
using that signal not a universal solution for standard TCP.
Furthermore, the one-way delay signal cannot be used as an
absolute delay time without clock synchronisation between
source and destination. Moreover, finding universal optimum
threshold values for the threshold based algorithms is very hard
or unachievable due to large varieties of network environments
and conditions. More serious problem for the delay-based
algorithm is the unfairness when competing against the greedy
loss-based algorithms including the standard TCP congestion
control.

B. Data link layer reliability and channel access method

Reliability mechanisms and channel access methods in some
networks, such as wireless networks, have a significant nega-
tive impact on the delay signal usability. The data link layer

of modern wireless networks, for example, attempts to supply
the network layer with error-free packets by providing reliable
packet recovery mechanisms. If packets arrive corrupted or do
not arrive at the destination, the sending station will retransmit
the packets until they arrive correctly. This behaviour makes
the network layer to wait for an unknown interval of time
before receiving the packets. The duration of this interval
depends on the degree of the noise and interference on the
channel.

Moreover, in shared transmission medium, Carrier-Sense
Multiple Access with Collision Avoidance (CSMA/CA) man-
ages channel access and attempts to minimise collisions of
transmitted packets. This involves sensing the carrier to see
whether it is busy andwaiting for a random intervals until the
channel becomes available.

CSMA/CA can also use Request to Send/Clear to Send
(RTS/CTS) to reduce the problem of collisions due to hidden
nodes. With RTS/CTS, the sender first sends an RTS frame to
be received by the Access point (AP). The AP sends back
a CTS frame to the sender to indicate that it may begin
trasmission. If the channel is busy or the AP has data to send
(typically AP has higher priority) the sender should further
wait before reattempting the RTS/CTS protocol. If RTS/CTS
frames are dropped, the node should wait for a random time
period before retransmitting the RTS frame.

This introduced waiting time becomes part of the end-
to-end delay measurement used by delay-based CC. This
latency is not related to network congestion and it corrupts
the delay feedback. Managing medium access becomes more
challenging in duplex communication channels. In a point-
to-point simplex communication channel, however, the issue
becomes less problematic since the channel will be dedicated
for one transmitter only.

Both data link reliability and CSMA/CA significantly
weaken the correlation between congestion and the mea-
sured delay signal. Any congestion related decisions (e.g.
cwnd backing-off) made by delay-based CC depending on
such signal significantly reduces the throughput and produces
unpredictable behaviour. In addition, these mechanisms can
affect packets on both the forward path and the reverse path
causing packets to be sent in bursts. Sending packets in bursts
causes queue fluctuation and ACK compression which have a
significant negative impact on RTT measurements.

Another problem that causes inaccurate RTT measurements
is packet aggregation of some data link layers of wireless
networks (e.g. IEEE802.11n). Packet aggregation aims to
reduce the overhead of sending small packets by combining
multiple packets and transmitting them as one frame. Karlsson
et al. [124] have shown that packet aggregation can make
several ACK packets to be sent back-to-back causing ACK
compression effect.

It is worth noting that even rate-estimation CC techniques
(e.g. TCP BBR in Section V-D5) can suffer (but in a smaller
degree) from these data link mechanisms since the ACKs
can arrive at the sender in burst faster than how the receiver
sent. Therefore, the bandwidth estimator will overestimate
the available bandwidth causing the sender hosts to transmits
packets faster than the actual available bandwidth.
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Therefore, it is very difficult and unreliable to use the
delay signal to control congestion in noisy and shared medium
networks with strong data link reliability. However, using some
delay based estimations (e.g RTTbase) to improve protocol
performance in such networks is considered useful and usable.

C. Emerging communication networks

With wide deployment of the TCP protocol in many devices
and operating systems, many emerging network applications
utilise this protocol to provide reliable data transfer. Different
types of networks have been developed to fulfil the needs
of modern network applications. These include vehicular net-
works (VANETs) [125], mobile ad hoc networks (MANETs)
[15] and delay tolerant networks (DTNs) [126]. These types of
networks typically have different characteristics to traditional
wired networks.

These characteristics can include one or more of changing
network paths (due to node mobility), changing numbers of
connected nodes, shared multi-hop channels, varying intrinsic
delays, unpredicatable medium and data link reliability, high
bit error rates, lack of continuous network connectivity and
low powered (electricity and/or computation) resources. These
challenges can propagate up the stack where they can inpact on
the performance of the transport protocols used within these
applications.

For example, varying latency due to changing paths or
packet loss due to unstable network topologies can result in the
TCP RTO being falsely triggered. Similarly, non-congestion
related packet losses can occur more frequently due to higher
bit error rates in such networks [15].

Further impact may be seen where variable data transmis-
sion and unpredictable latencies can cause delay-based con-
gestion control to misinterpret the delay signal. It is difficult
to determine if any increase in measured delay is the result of
network congestion or other non-congestion related effects.

Another challenging application space is the Internet of
Things (IoT). Many end devices (things) utilise a TCP trans-
port to communicate with a number of pre-existing Internet
services and devices [120]. Typically, a large number of these
devices would connect via wireless networks (infrastructure,
Ad hoc or mesh networks).

IoT devices typically have limited processing power and/or
energy resources, limiting their capabilities. CC for these
devices should be lightweight and efficient to provide high
performance with limited resources.

Traditional TCP algorithms may perform poorly under these
circumstances. Packet loss results in wasted communication
capacity, and can lead to increased processing overhead when
recovering from loss. Alternatively, delay-based CC may result
in improved overall performance at the increased cost of
accurately predicting network state.

Each of these emerging applications have unique network
and application requirements, meaning no one CC algorithm
is best for all cases. This implies that selection of suitable CC
mechanisms should be performed on a case-by-case basis.

D. Effects of using AQM on delay signal
While AQM and delay-based CC share the same goal

of keeping queuing delay low, they achieve that goal from
different places. AQM’s place is the middleboxes (such as
switches, routers and firewalls) and they need a reaction from
the end host to control the congestion. On the other hand,
delay-based CC achieves that goal using end-to-end approach
without help from network appliances.

In controlled environments (data centre networks, for ex-
ample), it is easy to deploy AQM in the bottlenecks since
network equipment usually belongs to the one organisation.
Additionally, delay-based CC algorithms can work very well in
such environments since flows can be homogeneous (one CC
is used) and the noise in delay signal is low. Therefore, either
of the two approaches works well. On the Internet, however,
there is no one organisation having control over the equipment
along the path between the sender and receiver hosts. If the
place of a bottleneck is known and accessible by an individual,
queuing delay can be controlled by deploying AQM in that
bottleneck. An example of such bottlenecks is ADSL home
gateways in the upstream direction.

On the other hand,bottleneck location is unknown, inac-
cessible or AQM is not implemented for specific hardware,
there is no way for the end-users or service providers (such
as gaming servers) to use AQM. Furthermore, it is very hard
to know whether AQM is deployed along the path or not.
Therefore, in such common case delay-based CC (low-latency
transport) is the only choice for the end-users or service
providers to achieve low latency communication.

In this context, it is not uncommon to see delay-based
CC flows pass across AQM-enabled bottlenecks. This raises
questions about the effects of deploying AQM on delay-based
flows and the coexistence of AQM and delay-based CC.

AQMs effectively create short queues (in size or time) to
prevent packets from unnecessarily residing in the buffer for
too long. On the other hand, delay-based CC relies on queuing
delay measurement to infer congestion. Short queues reduce
the signal variations that latency-sensitive CC algorithms rely
on.

Most delay-based and hybrid congestion control algorithms
compare the delay measurements with thresholds to infer the
congestion level in a network. If these thresholds allow the
bottleneck queue to include packets longer than AQM allows,
the algorithm will fall back to loss signal reactive mode.
This behaviour damages a substantial goal of the delay-based
algorithms in which they try to reduce the number of packets
losses by early reacting to the congestion.

Many delay-based CC algorithms (TCP DUAL and TCP
Vegas for example) aim to reduce TCP saw-teeth cwnd be-
haviour to achieve both stability and high throughput even in
shallow bottleneck buffers. However, falling back to loss mode
destroys these aims and can create fluctuation in throughput
because CC may excessively back off cwnd below path’s BDP
especially in high-speed long-distance links.

Additionally, working in loss-mode all the time can alter
the design goal of some delay-based CC. For example, it has
been shown that AQM bottlenecks raise the priority of LPCC
making scavenger-class transport to compete equally with
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conventional TCP for bottleneck bandwidth [127]. Without
taking AQM deployment into consideration, scavenger-class
transports can impact negatively on conventional TCP traffic.
A study on the effects of modern AQM bottlenecks on libutp
[89], LEDBAT-based widely deployed transport, shows that
LEDBAT flows become more aggressive than conventional
TCP flows when AQM is used [91]. The issue is that libutp
increases cwnd quickly (faster than standard TCP) when the
queuing delay is small and cwnd growth becomes slower
as the queuing delay becomes closer to LEDBAT’s target
delay (see Section V-A7 for details about LEDBAT CC). This
strategy works well with FIFO bottleneck to converge quickly
to full utilisation but not with AQM enabled bottlenecks since
queuing delay will hardly reach LEDBAT’s target delay.

Moreover, if the AQM allows very low queuing delay, the
noise reduction techniques used by delay-based algorithms
(such as moving average) can destroy the signal completely.
Figure 14 illustrates how the use of AQM in a bottleneck can
destroy the delay signal through reducing the queueing delay
variation.

Despite the challenges of using a delay signal in such
environments, AQM can help some algorithms to overcome the
latecomer advantage problem by forcing all flows to back off.
This allows resistant queues to drain giving an opportunity for
flows to obtain correct propagation delay estimation. Addition-
ally, if a bottleneck employs AQM with ECN marking support
and the end hosts also support ECN, delay-based CC can
work reasonably well in keeping queuing delay low without
packet losses since the congestion signal is sent directly from
the congested box. However, reacting to ECN signal by the
delay-based CC can create fluctuations in throughput similar
to packet drop. In this aspect, TCP Alternative Backoff with
ECN (ABE) [59] plays a very important role in keeping
unacknowledged data close to the path’s BDP and reducing
cwnd fluctuation. This proposal suggests using two different
cwnd back-off factors; one for ECN (βECN ) and another for
packet drop (βloss) and the proposal recommends using 0.8
for βECN .

Recently, there has been growing interest in deploying
modern AQM on the Internet due to increased sensitivity
of many applications to latency caused by bufferbloat. This
raises questions about how AQM bottlenecks will affect CC
algorithms that rely entirely or in-part on the delay signal.
Therefore, research needs to be conducted to understand the
behaviours of delay-signal CC with AQM in a wide range
of environments. This requires more theoretical and practical
studies for the delay signal and the distortion level of AQM on
that signal and the CC algorithms that employ such a signal.

It is apparent that the presence of an AQM managed
bottleneck may damage the delay signal with respect to delay-
based CC algorithm, which could result in some implemen-
tations reverting to loss-based mode leading to unintended
consequences when competing with other flows. However, the
short queues enforced by the AQM will limit this impact on
the performance of competing flows. Alternatively, the use of
delay-based CC algorithms may help in circumstances where
AQMs are not deployed.

Sender Receiver
FIFO bottleneck

AQM bottleneck

Accumulated delay

Delay variation 

Delay variation 

Queuing delay

Fig. 14. The effect of using AQM on the delay signal

E. Quantifying Impact on Delay Signal

In this paper, we have highlighted a number of challenges
when using the delay feedback signal for congestion control.
However, our analysis is a qualitative work based on imple-
mentation details and outcomes observed by other researchers.
To fully understand how these delay-based CC algorithms
behave and compare under varying situations, a quantitative
assessment of the impact on the delay signal is required.

This opens directions to further research to evaluate and
compare the performance of delay-based CCs in different
networks to better understand the behaviour of the delay
feedback signal in different environments. The outcomes of
such work should result in a clearer picture of the prevailing
work with delay-based CC, and will help to develop better
delay-based CC that satisfies the needs of specific applications
and networks.

VII. CONCLUSIONS

During the last three decades, the Internet has become faster
by many orders of magnitude and, at the same time, users have
been deploying more internet based applications with a diverse
mix of bandwidth and latency requirements. To meet the
demands of the internet users and applications, academic and
industry research have focused on improving the performance
of TCP, the internet’s dominant transport protocol.

Congestion control is a critical part of TCP, directly influ-
encing transport performance. Consequently congestion con-
trol techniques have attracted a great deal of research attention.
In this paper, we have surveyed a range of key congestion
control algorithms that utilise the delay signal to infer the
existence of congestion and/or use the measured delay as part
of their congestion response behaviour.

Standard TCP CC is effective in protecting the network from
collapse. However, this is not the sole concern of modern CC.
Efficient capacity utilisation, low queueing delay and tolerance
of non-congestion loss have become key requirements imposed
by many applications and services. One of the biggest issues of
the standard TCP is that it is unable to control the the latency
caused by bottleneck queue congestion (or bufferbloat) due to
use packet loss as a congestion feedback. This problem has
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serious impact on delay-sensitive applications such as video
conference and multiplayer online gaming.

One solution to the bufferbloat problem is to manage queues
using delay-focused AQM instead of DropTail management
of FIFO queues. Many AQM proposed during the last two
decades were not widely deployed because they were hard to
optimally configure. Recently, new AQM strategies have re-
emerged that are deployable, provide acceptable performance,
while effectively controlling and limiting bottleneck queuing
delay. Using ECN marking instead of packet dropping can
provide an efficient queuing delay control without wasting
network resources.

Delay-based congestion control interprets the delay in
packet delivery (RTT or one-way delay) to early infer network
congestion and control the congestion in an efficient manner
without causing the buffer to bloat. In general, the delay-
based approaches compare the delay signal with a threshold
(constant or adaptive) or monitor the delay trend or gradient
to infer congestion. Such techniques are capable of reducing
bottleneck queue delay and packet loss rate and improving
overall network performance.

However, using the delay signal as congestion feedback
creates many challenges. Low fair share with standard TCP
is one of the main issues of using the delay-based congestion
control on the Internet. Some techniques primarily use the
loss signal in their operations but utilise the delay signal as a
secondary signal to improve the throughput, scalability and/or
compatibility of the protocol. Others are designed to switch
from delay mode to loss mode based on the type of the
competing flows to provide butter compatibility with standard
TCP.

Additionally, low-priority delay-based algorithms find that
the unfairness is a desirable side effect which makes them
work in the background without impacting other flows. More-
over, some CC protocols utilise delay in very limited parts of
their operation such as calculating effective cwnd after packet
loss event to enhance the performance in lossy environments.

Using delay-based congestion control in the Internet can
raise link utilisation and reduce the effects of bufferbloat.
There are many opportunities for researchers to conduct fur-
ther studies to improve delay-based congestion control for spe-
cific or homogeneous environments. Finally, the coexistence
of the delay-based approaches with emerging AQM techniques
raises questions about what impact an AQM-based bottleneck
can cause to the delay signal whether these bottleneck utilises
ECN marking or packet dropping.
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